

Project Number:

Project Title:

Deliverable Type:

Deliverable Type:

Deliverable Number:

Contractual Date of Delivery to the CEC:

Actual Date of Delivery to the CEC:

Title of Deliverable:

Workpackage contributing to the

Nature of the Deliverable:

Keyword List:

Project Number: FP7-257123

Project Title: CONVERGENCE

Deliverable Type: Report

Deliverable Type: Public

Deliverable Number: D5.1

Contractual Date of Delivery to the CEC: 31.03.2011

Actual Date of Delivery to the CEC: 29.05.2011

Title of Deliverable:
Requirements and Initial Protocol
Architecture

Workpackage contributing to the
Deliverable: WP 5

Nature of the Deliverable: Report

Editor:
Angelos-Christos Anadiotis,
Patrikakis, Iakovos Venieris

Author(s):

Angelos-Christos Anadiotis, Leonardo
Chiariglione, Angelo Difino, Aziz Mousas,
Dimitra Kaklamani, Georgios Lioudakis,
Charalampos Patrikakis, Andrea Detti,
Giuseppe Tropea, Stefano Salsano, Nicola
Blefari Melazzi, Helder Castro, Maria
Teresa Andrade

Abstract:

This deliverable contains requirements and
initial protocol architecture definition for
the CONVERGENCE platform.

Keyword List:
Requirements, specifications, middleware
protocols, network protocols

Requirements and Initial Protocol

Christos Anadiotis, Charalampos
Patrikakis, Iakovos Venieris

Christos Anadiotis, Leonardo
Chiariglione, Angelo Difino, Aziz Mousas,
Dimitra Kaklamani, Georgios Lioudakis,
Charalampos Patrikakis, Andrea Detti,
Giuseppe Tropea, Stefano Salsano, Nicola

i Melazzi, Helder Castro, Maria

This deliverable contains requirements and
initial protocol architecture definition for
the CONVERGENCE platform.

Requirements, specifications, middleware
protocols, network protocols

D5.1 Requirements and Initial Protocol Architecture

Executive Summary

This is the first deliverable of WP5, reporting on the requirements for the CONVERGENCE

platform and on the definition of th

The deliverable begins with the requirements identified in deliverable D2.1

name of the service/operation the system uses to satisfy the requirement

Taking into account the need for definition of protocols to be used for serving the

communication between CONVERGENCE entities residing on connected devi

this deliverable contains the definition of the middleware protocols that will ensure:

1. Support of a standardised interface for the communication

2. Provision of services to instances of the CONVERGENCE middleware

of hardware, software, and operating system.

As far as concerns middleware protocols, the WP5 team has decided to base the protocol

architecture for the CONVERGENCE middleware (COMID) on the MPEG

protocol suite. The team therefore defined the architecture, specifying it in such a way as to

make as much use as possible of the technology and protocol engines defined in the standard

and introducing enhancements and additions when necessary to support specific use cases.

After describing the elementary services used to perform basic operations in the MPEG

architecture, the deliverable goes on to describe the protocols themselves and the associated

protocol engines. It then provides a detailed description of the elementary services selected

for inclusion in the CONVERGENCE middleware, and describes the protocol for each

service.

The section of the deliverable dedicated to network protocols focuses on th

the protocols supporting the Convergence NETwork (CONET)

support the CONET API, as identified and defined in

protocol architecture, the main emphasis is on the protocols and algorithms used to retrieve

named-data. Subsequent WP5 deliverables will provide a complete list of protocols including

those required for the delivery of un

point-to-multipoint data distribution (for video streaming), and data

Initial Protocol Architecture

Summary

This is the first deliverable of WP5, reporting on the requirements for the CONVERGENCE

platform and on the definition of the initial protocol architecture.

The deliverable begins with the requirements identified in deliverable D2.1

name of the service/operation the system uses to satisfy the requirement, if applicable

Taking into account the need for definition of protocols to be used for serving the

communication between CONVERGENCE entities residing on connected devi

this deliverable contains the definition of the middleware protocols that will ensure:

Support of a standardised interface for the communication among

Provision of services to instances of the CONVERGENCE middleware

software, and operating system.

As far as concerns middleware protocols, the WP5 team has decided to base the protocol

architecture for the CONVERGENCE middleware (COMID) on the MPEG

protocol suite. The team therefore defined the architecture, specifying it in such a way as to

make as much use as possible of the technology and protocol engines defined in the standard

ancements and additions when necessary to support specific use cases.

After describing the elementary services used to perform basic operations in the MPEG

architecture, the deliverable goes on to describe the protocols themselves and the associated

ocol engines. It then provides a detailed description of the elementary services selected

for inclusion in the CONVERGENCE middleware, and describes the protocol for each

The section of the deliverable dedicated to network protocols focuses on th

the protocols supporting the Convergence NETwork (CONET) and the algorithms that

support the CONET API, as identified and defined in [5]. In this initial description of the

protocol architecture, the main emphasis is on the protocols and algorithms used to retrieve

data. Subsequent WP5 deliverables will provide a complete list of protocols including

those required for the delivery of un-named data (e.g. the “send-to” primitive in the API),

multipoint data distribution (for video streaming), and data-centric security.

Page 2 of 73

This is the first deliverable of WP5, reporting on the requirements for the CONVERGENCE

The deliverable begins with the requirements identified in deliverable D2.1 and reports the

, if applicable.

Taking into account the need for definition of protocols to be used for serving the

communication between CONVERGENCE entities residing on connected devices and hosts,

this deliverable contains the definition of the middleware protocols that will ensure:

among these entities.

Provision of services to instances of the CONVERGENCE middleware, regardless

As far as concerns middleware protocols, the WP5 team has decided to base the protocol

architecture for the CONVERGENCE middleware (COMID) on the MPEG-M Part 4 [3]

protocol suite. The team therefore defined the architecture, specifying it in such a way as to

make as much use as possible of the technology and protocol engines defined in the standard,

ancements and additions when necessary to support specific use cases.

After describing the elementary services used to perform basic operations in the MPEG-M

architecture, the deliverable goes on to describe the protocols themselves and the associated

ocol engines. It then provides a detailed description of the elementary services selected

for inclusion in the CONVERGENCE middleware, and describes the protocol for each

The section of the deliverable dedicated to network protocols focuses on the specification of

and the algorithms that

s initial description of the

protocol architecture, the main emphasis is on the protocols and algorithms used to retrieve

data. Subsequent WP5 deliverables will provide a complete list of protocols including

to” primitive in the API),

centric security.

D5.1 Requirements and Initial Protocol Architecture

INDEX

1 INTRODUCTION

2 GLOSSARY

3 REQUIREMENTS

3.1 INTRODUCTION

3.2 LIST WITH REQUIREMENTS

4 MIDDLEWARE PROTOCOLS

4.1 SCOPE OF THE SPECIFICATION

4.2 MIDDLEWARE OVERVIEW

4.3 ELEMENTARY SERVICES

4.3.1 Authenticate Content................................

4.3.1.1 Description

4.3.1.2 Protocol Specification

4.3.2 Authenticate Device

4.3.2.1 Description

4.3.2.2 Protocol Specification

4.3.2.3 Syntax of Protocol Data Format

4.3.2.4 Semantics of Protocol Data Format

4.3.3 Authenticate User

4.3.3.1 Description

4.3.3.2 Protocol Specification

4.3.4 Create Content

4.3.4.1 Description

4.3.4.2 Protocol Specification

4.3.5 Create License

4.3.5.1 Description

4.3.5.2 Protocol Specification

4.3.6 Deliver Content

4.3.6.1 Description

4.3.6.2 Protocol Specification

4.3.7 Describe Content

4.3.7.1 Description

4.3.7.2 Protocols Specification

4.3.7.2.1 Request Named Entity

4.3.7.2.1.1 Introduction

4.3.7.2.1.2 Protocol Specification

4.3.7.2.1.3 Syntax of Protocol Data Format

Initial Protocol Architecture

..

..

..

..

..

MIDDLEWARE PROTOCOLS SPECIFICATION ..

..

..

..

..

..

..

..

..

..

Syntax of Protocol Data Format ..

Semantics of Protocol Data Format ..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

 ..

Request Named Entity ..

..

Protocol Specification ..

Syntax of Protocol Data Format ..

Page 3 of 73

.. 7

.. 8

..................................... 16

.. 16

.. 16

... 30

... 30

... 30

.. 31

... 31

.. 31

... 31

.. 32

.. 32

... 32

.. 32

.. 33

.. 33

.. 33

... 33

.................................... 34

.. 34

... 34

..................................... 34

.. 34

... 34

................................... 34

.. 34

... 34

... 35

.. 35

... 35

.. 35

.. 35

... 35

... 36

D5.1 Requirements and Initial Protocol Architecture

4.3.7.2.1.4 Semantics of Protocol Data Format

4.3.8 Identify Content

4.3.8.1 Description

4.3.8.2 Protocol Specification

4.3.9 Identify User

4.3.9.1 Description

4.3.9.2 Protocol Specification

4.3.9.3 Syntax of Protocol Data Format

4.3.9.4 Semantics of Protocol Da

4.3.10 Inject Content

4.3.10.1 Description

4.3.10.2 Protocol Specification

4.3.10.3 Syntax of Protocol Data Format

4.3.10.4 Semantics of Protocol Data Format

4.3.11 Package Content

4.3.11.1 Description

4.3.11.2 Protocol Specification

4.3.12 Present Content

4.3.12.1 Description

4.3.12.2 Protocol Specification

4.3.12.3 Syntax of Protocol Data Format

4.3.12.4 Semantics of Protocol Data Format

4.3.13 Process Content

4.3.13.1 Description

4.3.13.2 Protocol Specification

4.3.14 Process License

4.3.14.1 Description

4.3.14.2 Protocol Specification

4.3.15 Request Content

4.3.15.1 Description

4.3.15.2 Protocol Specification

4.3.16 Request Event

4.3.16.1 Description

4.3.16.2 Protocol Specification

4.3.17 Revoke Content

4.3.17.1 Description

4.3.17.2 Protocol Specification

4.3.17.3 Syntax of Protocol Data Format

Initial Protocol Architecture

Semantics of Protocol Data Format ..

..

..

..

..

..

..

Syntax of Protocol Data Format ..

Semantics of Protocol Data Format ..

..

..

Protocol Specification ..

Syntax of Protocol Data Format ..

Semantics of Protocol Data Format ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

Syntax of Protocol Data Format ..

Semantics of Protocol Data Format ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

Syntax of Protocol Data Format ..

Page 4 of 73

.. 37

.................................. 38

.. 38

... 38

....................................... 39

.. 39

... 39

.. 39

.. 40

... 41

.. 41

.. 41

.. 42

... 42

... 43

.. 43

.. 43

.. 43

.. 43

.. 43

.. 44

... 44

.. 45

.. 45

.. 45

.. 45

.. 45

.. 45

... 45

.. 45

.. 46

.. 46

.. 46

.. 46

.. 46

.. 46

.. 46

.. 46

D5.1 Requirements and Initial Protocol Architecture

4.3.17.4 Semantics of Protocol Data Format

4.3.18 Search Content

4.3.18.1 Description

4.3.18.2 Protocol Specification

4.3.19 Store Content

4.3.19.1 Description

4.3.19.2 Protocol Specification

4.3.20 Store Event

4.3.20.1 Description

4.3.20.2 Protocol Specification

5 NETWORK PROTOCOLS SP

5.1 SCOPE OF THE SPECIFICATION

5.2 NETWORK OVERVIEW

5.3 PROTOCOL STACK

5.4 NETWORK IDENTIFIER (NID)

5.4.1 VLL (Variable Length Label) NID namespace

5.4.2 PLHB (Principal/Label Hash Based) NID namespace

5.5 PACKETIZATION PROCESS OF NAMED

5.6 DATA UNITS

5.6.1 Named-data CIU

5.6.2 Interest CIU

5.6.3 Carrier-packet

5.6.3.1 Payload Header and Payload fields

5.6.3.1.1 Interest CIU

5.6.3.1.2 Named-data CIU

5.6.3.2 Path-info field

5.7 TRANSPORT OF DATA UNITS TH

5.7.1 Layer 2 CSN (clean-slate approach)

5.7.2 Overlay- CSN (overlay approach)

5.7.3 IP- CSN (integration approach)

5.8 NETWORK OPERATIONS

5.8.1 Routing-by-name

5.8.2 Source-routing

5.8.3 Retrieval of a piece of a named

5.8.3.1 Request phase

5.8.3.1.1 Processing in the end

Initial Protocol Architecture

Semantics of Protocol Data Format ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

..

..

Protocol Specification ..

NETWORK PROTOCOLS SPECIFICATION ..

..

..

..

..

VLL (Variable Length Label) NID namespace ..

PLHB (Principal/Label Hash Based) NID namespace ..

OF NAMED-DATA ..

..

..

..

..

Payload Header and Payload fields ..

..

data CIU ..

..

NITS THROUGH CONET SUB NETWORKS (CSN)

slate approach) ..

CSN (overlay approach)..

CSN (integration approach) – The CONET IPv4 Option

..

..

..

Retrieval of a piece of a named-data CIU ..

..

Processing in the end-node ..

Page 5 of 73

... 47

... 48

.. 48

.. 48

.................................. 48

.. 48

.. 48

..................................... 49

.. 49

.. 49

.. 50

... 50

................................... 51

... 52

.. 53

... 53

.. 54

.................................. 54

.. 55

... 56

... 57

..................................... 59

... 62

.. 62

... 62

... 64

... 65

................................... 65

....................................... 65

.. 65

... 67

.. 67

..................................... 68

... 68

... 69

... 69

D5.1 Requirements and Initial Protocol Architecture

5.8.3.1.2 Processing in the serving

5.8.3.1.3 Processing in the border

5.8.3.1.4 Processing in the internal

5.8.3.1.5 Processing in the legacy routers

5.8.3.2 Delivery phase

5.8.3.2.1 Processing in the

5.8.3.2.2 Processing in a border

5.8.3.2.3 Processing in an internal

5.8.3.2.4 Processing in the legacy routers

5.8.4 Complete retrieval of a named

6 BIBLIOGRAPHY

Initial Protocol Architecture

Processing in the serving-node ..

Processing in the border-node ..

Processing in the internal-node ..

Processing in the legacy routers ..

..

Processing in the responding node ..

Processing in a border-node ..

Processing in an internal-node ..

Processing in the legacy routers ..

Complete retrieval of a named-data – Transport algorithm

..

Page 6 of 73

... 69

.. 69

... 70

... 70

.. 71

....................................... 71

... 71

.. 72

... 72

.. 72

...................................... 73

D5.1 Requirements and Initial Protocol Architecture

1 Introduction

This document presents requirements

protocols and specifies the initial

previously defined in deliverable D2.1

Protocol Engines. These will be based on an extended version of

suite. Then, the deliverable present

to support the API for the COnvergence NET

We recommend to read D3.2 “System Architecture”

CONVERGENCE system architecture, before reading this document.

Initial Protocol Architecture

requirements for the CONVERGENCE middleware and network

the initial protocol architecture. The requirements

defined in deliverable D2.1. The deliverable goes on to describe the

. These will be based on an extended version of the MPEG

presents the network level protocols and the algorithms necessary

COnvergence NETwork.

to read D3.2 “System Architecture”[5], which provides an overview of the

CONVERGENCE system architecture, before reading this document.

Page 7 of 73

for the CONVERGENCE middleware and network

equirements are based on those

. The deliverable goes on to describe the middleware

MPEG-M part 4 protocol

algorithms necessary

, which provides an overview of the

D5.1 Requirements and Initial Protocol Architecture

2 Glossary

Term

Access Rights Criteria defining who can access a VDI under what conditions.

Advertise Procedure used by a CoNet

CoNet users.

Application Software, designed for a specific purpose that exploits the capabilities of

the CONVERGENCE System.

Business Scenario A scenario describing one way in which the CONVERGENCE System

may be used by specific users in a specific situation; more narrowly: a

scenario describing the commercial products and services bought and

sold in such a situation, the actors concerned and, possibly, the

associated flows of revenue.

Clean-slate

architecture

The CONVERGENCE implementation of the Network Layer, totally

replacing existing IP functionality.

See “Integration Architecture” and ”“

Architecture

CoApp The CONVERGENCE Application Layer.

CoApp Provider A user of

Layer (CoMid).

CoMid The CONVERGENCE Middleware Layer.

CoMid Provider A user providing access to CoMid services.

CoMid services may be offered by a single provider or by a federation of

providers

CoMid Resource A virtual or physical object or service, referenced by a VDI, e.g. a video

file, a Real World Object, a person, an Internet service, etc.

See “VDI”.A resource can be virtually packaged as a VDI, on its own or

together with other

includes the creation of an XML file describing the structure of the VDI

and the links among its components.

Community

Dictionary

A Functional Block belonging to the CONVERGENCE Middleware

Layer that provides all the matching concepts in a user

Initial Protocol Architecture

Definition

Criteria defining who can access a VDI under what conditions.

Procedure used by a CoNet user to make a resource accessible to other

CoNet users.

Software, designed for a specific purpose that exploits the capabilities of

the CONVERGENCE System.

A scenario describing one way in which the CONVERGENCE System

be used by specific users in a specific situation; more narrowly: a

scenario describing the commercial products and services bought and

sold in such a situation, the actors concerned and, possibly, the

associated flows of revenue.

The CONVERGENCE implementation of the Network Layer, totally

replacing existing IP functionality.

See “Integration Architecture” and ”“Overlay Architecture” and “Parallel

Architecture”.

The CONVERGENCE Application Layer.

user offering Applications running on the Convergence Middleware

Layer (CoMid).

The CONVERGENCE Middleware Layer.

user providing access to CoMid services.

CoMid services may be offered by a single provider or by a federation of

providers.

A virtual or physical object or service, referenced by a VDI, e.g. a video

file, a Real World Object, a person, an Internet service, etc.

See “VDI”.A resource can be virtually packaged as a VDI, on its own or

together with other resources and metadata. The packaging operation

includes the creation of an XML file describing the structure of the VDI

and the links among its components.

A Functional Block belonging to the CONVERGENCE Middleware

r that provides all the matching concepts in a user

Page 8 of 73

Criteria defining who can access a VDI under what conditions.

user to make a resource accessible to other

Software, designed for a specific purpose that exploits the capabilities of

A scenario describing one way in which the CONVERGENCE System

be used by specific users in a specific situation; more narrowly: a

scenario describing the commercial products and services bought and

sold in such a situation, the actors concerned and, possibly, the

The CONVERGENCE implementation of the Network Layer, totally

Overlay Architecture” and “Parallel

fering Applications running on the Convergence Middleware

CoMid services may be offered by a single provider or by a federation of

A virtual or physical object or service, referenced by a VDI, e.g. a video

file, a Real World Object, a person, an Internet service, etc.

See “VDI”.A resource can be virtually packaged as a VDI, on its own or

resources and metadata. The packaging operation

includes the creation of an XML file describing the structure of the VDI

A Functional Block belonging to the CONVERGENCE Middleware

r that provides all the matching concepts in a user’s subscription,

D5.1 Requirements and Initial Protocol Architecture

Service (CDS) search request and publication.

The CDS parses and interprets the ontologies created by the

CONVERGENCE users. It thus enables to understand users

subscriptions or search requests as well

CoNet The CONVERGENCE Network Layer.

CoNet Provider A user providing access to CoNet services, i.e. it is the corresponding of

today's Internet Service Provider.

CoNet Resource A resource of the CoNet

be either a Named data or a Named service access point.

Content-based

resource

discovery

A user request for resources, either through a subscription to the

CONVERGENCE System or a search request to the

system. The CONVERGENCE system will then return a list of VDIs

compatible with the search criteria.

See “subscription” and “search”.

Content-based

Subscription

A subscription based on a specification of user’s preferences or interests,

(rather than a specific event or topic). In other terms, the subscription is

based on the actual content of the considered events, which are not

classified according to some predefined external criterion (e.g., topic

name), but according to the properties of the

See “Subscription” and “Publish

Content-centric A network paradigm in which the network directly provides users with

contents, and is aware of which content is actually transported, instead of

limiting itself to prov

CONVERGENCE

Applications layer

(CoApp)

The layer of CONVERGENCE that establishes the interaction with

CONVERGENCE users. The Applications Layer interacts with the other

CONVERGENCE layers on behalf of the user.

CONVERGENCE

Core Ontology

(CCO)

A semantic representation of the CoReST taxonomy.

See “CONVERGENCE Resource Semantic Type (CoReST)”

CONVERGENCE

Device

A combination of hardware and software or

allows a user to access Convergence functionalities

CONVERGENCE

Engine

A collection of technologies bundled together to deliver specific

functionality and made available to users and to other Engines via API

CONVERGENCE A layer of CONVERGENCE that provides the means to handle resources

Initial Protocol Architecture

search request and publication.

The CDS parses and interprets the ontologies created by the

CONVERGENCE users. It thus enables to understand users

subscriptions or search requests as well as publications.

The CONVERGENCE Network Layer.

user providing access to CoNet services, i.e. it is the corresponding of

today's Internet Service Provider.

A resource of the CoNet that can be identified by means of a name; it can

be either a Named data or a Named service access point.

A user request for resources, either through a subscription to the

CONVERGENCE System or a search request to the

system. The CONVERGENCE system will then return a list of VDIs

compatible with the search criteria.

See “subscription” and “search”.

A subscription based on a specification of user’s preferences or interests,

r than a specific event or topic). In other terms, the subscription is

based on the actual content of the considered events, which are not

classified according to some predefined external criterion (e.g., topic

name), but according to the properties of the events themselves.

See “Subscription” and “Publish-subscribe model”.

A network paradigm in which the network directly provides users with

contents, and is aware of which content is actually transported, instead of

limiting itself to providing communication channels between hosts.

The layer of CONVERGENCE that establishes the interaction with

CONVERGENCE users. The Applications Layer interacts with the other

CONVERGENCE layers on behalf of the user.

A semantic representation of the CoReST taxonomy.

See “CONVERGENCE Resource Semantic Type (CoReST)”

A combination of hardware and software or a software instance

allows a user to access Convergence functionalities

A collection of technologies bundled together to deliver specific

functionality and made available to users and to other Engines via API

ayer of CONVERGENCE that provides the means to handle resources

Page 9 of 73

The CDS parses and interprets the ontologies created by the

CONVERGENCE users. It thus enables to understand users

as publications.

user providing access to CoNet services, i.e. it is the corresponding of

that can be identified by means of a name; it can

be either a Named data or a Named service access point.

A user request for resources, either through a subscription to the

CONVERGENCE System or a search request to the CONVERGENCE

system. The CONVERGENCE system will then return a list of VDIs

A subscription based on a specification of user’s preferences or interests,

r than a specific event or topic). In other terms, the subscription is

based on the actual content of the considered events, which are not

classified according to some predefined external criterion (e.g., topic

events themselves.

A network paradigm in which the network directly provides users with

contents, and is aware of which content is actually transported, instead of

iding communication channels between hosts.

The layer of CONVERGENCE that establishes the interaction with

CONVERGENCE users. The Applications Layer interacts with the other

See “CONVERGENCE Resource Semantic Type (CoReST)”

a software instance that

A collection of technologies bundled together to deliver specific

functionality and made available to users and to other Engines via API

ayer of CONVERGENCE that provides the means to handle resources

D5.1 Requirements and Initial Protocol Architecture

Middleware layer

(CoMid)

on the basis of “what” they contain and offer. These functionalities are

implemented using a set of technologies that we call CONVERGENCE

Middleware (CoMid)

Service (CDS) Functional Block.

CONVERGENCE

Network layer

(CoNet)

A layer of the CONVERGENCE system that provides access to named

resources on a public or private network infrastructure.

CONVERGENCE

Resource

Semantic Type

(CoReST)

A list of c

CONVERGENCE resources, establishing a connection with the

resource’s semantic metadata.

CONVERGENCE

System

A system built by using the technologies specified or adopted by the

CONVERGENCE specification. The CONVERGENCE system consists

of a set of interconnected CONVERGENCE devices

connected to each other.

See “Node” and “Peer”.

Describe,

Discover,

Distribute (DDD)

A paradigm

functionalities offered by the CoMid layer of CONVERGENCE.

Digital forgetting Techniques designed to ensure that VDIs do not remain accessible for

indefinite peri

Digital Item (DI) A structured digital object with a standard representation, identification

and metadata. A DI consists of content, content and context related

metadata, and structure. The structur

Declaration (DID) that links content and metadata.

Discussion A set or graph of messages each containing links to other messages. In

the context of CONVERGENCE discussions and messages within

discussions may be represented as

Domain ontology An ontology, dedicated to a specific knowledge domain or application.

In CONVERGENCE, domain ontologies will be used to establish

associations between VDIs and their semantic metadata. Examples of

domain ontologies

ontology.

Elementary

Service (ES)

A concept imported from the

most basic unit of functionality offered by the CoMid. ES provide

Initial Protocol Architecture

on the basis of “what” they contain and offer. These functionalities are

implemented using a set of technologies that we call CONVERGENCE

Middleware (CoMid) and which includes the Community Di

Service (CDS) Functional Block.

A layer of the CONVERGENCE system that provides access to named

resources on a public or private network infrastructure.

A list of concepts or terms that makes it possible to categorize

CONVERGENCE resources, establishing a connection with the

resource’s semantic metadata.

A system built by using the technologies specified or adopted by the

CONVERGENCE specification. The CONVERGENCE system consists

of a set of interconnected CONVERGENCE devices

connected to each other.

See “Node” and “Peer”.

paradigm that uses three different axes to aggregate the pillar

functionalities offered by the CoMid layer of CONVERGENCE.

Techniques designed to ensure that VDIs do not remain accessible for

indefinite periods of time, when this is not the intention of the user.

A structured digital object with a standard representation, identification

and metadata. A DI consists of content, content and context related

metadata, and structure. The structure is given by a Digital Item

Declaration (DID) that links content and metadata.

A set or graph of messages each containing links to other messages. In

the context of CONVERGENCE discussions and messages within

discussions may be represented as VDIs.

An ontology, dedicated to a specific knowledge domain or application.

In CONVERGENCE, domain ontologies will be used to establish

associations between VDIs and their semantic metadata. Examples of

domain ontologies include the W3C Time Ontology and the GeoNames

ontology.

A concept imported from the emerging MPEG-M standard. Refers to the

most basic unit of functionality offered by the CoMid. ES provide

Page 10 of 73

on the basis of “what” they contain and offer. These functionalities are

implemented using a set of technologies that we call CONVERGENCE

which includes the Community Dictionary

A layer of the CONVERGENCE system that provides access to named-

resources on a public or private network infrastructure.

oncepts or terms that makes it possible to categorize

CONVERGENCE resources, establishing a connection with the

A system built by using the technologies specified or adopted by the

CONVERGENCE specification. The CONVERGENCE system consists

of a set of interconnected CONVERGENCE devices - peers and nodes -

uses three different axes to aggregate the pillar

functionalities offered by the CoMid layer of CONVERGENCE.

Techniques designed to ensure that VDIs do not remain accessible for

ods of time, when this is not the intention of the user.

A structured digital object with a standard representation, identification

and metadata. A DI consists of content, content and context related

e is given by a Digital Item

A set or graph of messages each containing links to other messages. In

the context of CONVERGENCE discussions and messages within

An ontology, dedicated to a specific knowledge domain or application.

In CONVERGENCE, domain ontologies will be used to establish

associations between VDIs and their semantic metadata. Examples of

include the W3C Time Ontology and the GeoNames

M standard. Refers to the

most basic unit of functionality offered by the CoMid. ES provide

D5.1 Requirements and Initial Protocol Architecture

CoMid’s main functionality.

Elementary

CONVERGENCE entities to implement a series of actions.

Entity An object which an Elementary Service can act upon or with which it

can interact.

Entities can be VDIs, resources, devices, events, gr

licenses/contracts, services and users.

Expiry date The last date on which a VDI may be legitimately used by a user of the

CONVERGENCE System. The last date on which the CONVERGENCE

system will allow a user to find the VDI in a search or subscription

retrieve the VDI.

Fractal A semantically defined virtual cluster in a distributed overlay network

composed of all CONVERGENCE peers running CoMid.

Functional Block Partial or complete implementations of the functionality required by a

specific layer of the CONVERGENCE architecture. Functional blocks

are implemented as Engines.

Functional layer An aggregated set of conceptually similar functional blocks. The

CONVERGENCE architecture defines three functional layers:

Application, Middleware and Ne

Integration

Architecture

An implementation of CoNet designed to integrate CoNet

in the IP protocol by means of a novel IPv4 option or by means of an

IPv6 extension header, making IP itself content

Unlike the clean

imply the need

CoNet running over

state Architecture

Architecture”

License A machine

Principal.

Local named

resource

A named

through a local device, permanently connected to the network.

Users ha

users: 1) store the resource in a device, with a permanent connection to

Initial Protocol Architecture

CoMid’s main functionality.

Elementary Services can be used on their own or in combination with

CONVERGENCE entities to implement a series of actions.

An object which an Elementary Service can act upon or with which it

can interact.

Entities can be VDIs, resources, devices, events, gr

licenses/contracts, services and users.

The last date on which a VDI may be legitimately used by a user of the

CONVERGENCE System. The last date on which the CONVERGENCE

system will allow a user to find the VDI in a search or subscription

retrieve the VDI.

A semantically defined virtual cluster in a distributed overlay network

composed of all CONVERGENCE peers running CoMid.

Partial or complete implementations of the functionality required by a

layer of the CONVERGENCE architecture. Functional blocks

are implemented as Engines.

An aggregated set of conceptually similar functional blocks. The

CONVERGENCE architecture defines three functional layers:

Application, Middleware and Network.

An implementation of CoNet designed to integrate CoNet

in the IP protocol by means of a novel IPv4 option or by means of an

IPv6 extension header, making IP itself content-aware.

Unlike the clean-state architecture, the Integration Architecture

the need to give up IP. On the other side, it performs better than a

running over IP, as proposed in the overlay approach.

state Architecture” and “Overlay Architecture” and “Parallel

Architecture”.

A machine-readable expression of Operations that may be executed by a

Principal.

A named-resource made available to the CONVERGENCE users

through a local device, permanently connected to the network.

Users have two options to make named-resources available to other

users: 1) store the resource in a device, with a permanent connection to

Page 11 of 73

Services can be used on their own or in combination with

CONVERGENCE entities to implement a series of actions.

An object which an Elementary Service can act upon or with which it

Entities can be VDIs, resources, devices, events, group,

The last date on which a VDI may be legitimately used by a user of the

CONVERGENCE System. The last date on which the CONVERGENCE

system will allow a user to find the VDI in a search or subscription or to

A semantically defined virtual cluster in a distributed overlay network

composed of all CONVERGENCE peers running CoMid.

Partial or complete implementations of the functionality required by a

layer of the CONVERGENCE architecture. Functional blocks

An aggregated set of conceptually similar functional blocks. The

CONVERGENCE architecture defines three functional layers:

An implementation of CoNet designed to integrate CoNet functionality

in the IP protocol by means of a novel IPv4 option or by means of an

aware.

Integration Architecture does not

performs better than a

in the overlay approach. See “Clean-

Overlay Architecture” and “Parallel

readable expression of Operations that may be executed by a

resource made available to the CONVERGENCE users

through a local device, permanently connected to the network.

resources available to other

users: 1) store the resource in a device, with a permanent connection to

D5.1 Requirements and Initial Protocol Architecture

the network; 2) use a hosting service. In the event she chooses the former

option, the resource is referred to as a local nam

Metadata Data describing a resource referenced by a VDI, including but not

limited to provenance, classification, access rights, expiry date etc.

MPEG eXtensible

Middleware

(MXM)

A standard Middleware specifying a set of Application

Interfaces (APIs) so that MXM Applications executing on an MXM

Device can access the standard multimedia technologies contained in the

Middleware as MXM Engines.

MPEG-M An emerging standard proposed by MPEG as an extension of the MXM

standard.

Multi-homing In the context of IP networks, the configuration of multiple network

interfaces or IP addresses on a single computer.

Named data A named-

Named resource A CoNet resource that can be identified by means of a name

resources may be either data (in the following referred to as “named

data”) or service

Examples of named

points of access to a service.

Named service

access point

A kind of named

by a name. A named

identified by its name rather than by the Internet port numbering

mechanism.

Network

Identifier (NID)

An identifier identifying a named resource in the CONVERGENCE

Network. If the named resource is a VDI, its NID may or may not be

identical to the VDI identifier (to be decided).

Node A CONVERGENCE device that implements CoNet functionality.

Typically, a

Overlay

architecture

An implementation of CoNet as an overlay over IP.

See “Clean

“Parallel Architecture”

Parallel

architecture

An implementation of

in parallel to IP.

See “Clean

Initial Protocol Architecture

the network; 2) use a hosting service. In the event she chooses the former

option, the resource is referred to as a local named-resource.

Data describing a resource referenced by a VDI, including but not

limited to provenance, classification, access rights, expiry date etc.

A standard Middleware specifying a set of Application

Interfaces (APIs) so that MXM Applications executing on an MXM

Device can access the standard multimedia technologies contained in the

Middleware as MXM Engines.

An emerging standard proposed by MPEG as an extension of the MXM

In the context of IP networks, the configuration of multiple network

interfaces or IP addresses on a single computer.

-resource consisting of data.

A CoNet resource that can be identified by means of a name

resources may be either data (in the following referred to as “named

data”) or service-access-points (“named-service-access

Examples of named-resources include VDIs, electronic documents and

points of access to a service.

A kind of named-resource, consisting of a service access point identified

by a name. A named-service-access-point is a network endpoint

identified by its name rather than by the Internet port numbering

mechanism.

identifier identifying a named resource in the CONVERGENCE

Network. If the named resource is a VDI, its NID may or may not be

identical to the VDI identifier (to be decided).

A CONVERGENCE device that implements CoNet functionality.

Typically, a node is owned by a Telco or Service Provider.

An implementation of CoNet as an overlay over IP.

Clean-state Architecture” and “Integration Architecture” and

“Parallel Architecture”

An implementation of CoNet as a new networking layer that can be used

in parallel to IP.

Clean-state Architecture” and “Integration Architecture” and

Page 12 of 73

the network; 2) use a hosting service. In the event she chooses the former

resource.

Data describing a resource referenced by a VDI, including but not

limited to provenance, classification, access rights, expiry date etc.

A standard Middleware specifying a set of Application Programming

Interfaces (APIs) so that MXM Applications executing on an MXM

Device can access the standard multimedia technologies contained in the

An emerging standard proposed by MPEG as an extension of the MXM

In the context of IP networks, the configuration of multiple network

A CoNet resource that can be identified by means of a name. Named-

resources may be either data (in the following referred to as “named-

access-points”).

resources include VDIs, electronic documents and

resource, consisting of a service access point identified

point is a network endpoint

identified by its name rather than by the Internet port numbering

identifier identifying a named resource in the CONVERGENCE

Network. If the named resource is a VDI, its NID may or may not be

A CONVERGENCE device that implements CoNet functionality.

node is owned by a Telco or Service Provider.

Integration Architecture” and

CoNet as a new networking layer that can be used

” and “Integration Architecture” and

D5.1 Requirements and Initial Protocol Architecture

”“Overlay Architecture”

Peer A CONVERGENCE device that implements CoMid and CoNet

functionality.

A node will typically

or Telco.

Policy routing In the context of IP networks, a collection of tools for forwarding and

routing data packets based on policies defined by network administrators.

Principal From the perspective o

of Principal is: the User to whom Permissions are Granted in a License.

Note:

Depending on the approach chosen to assign Network Identifiers (NIDs)

to CoNet resources, the concept of principal may

naming purposes. For instance, each principal may be associated with a

string (e.g. assigned by a naming authority), and each CoNet resource

may have a NID of the form:

NID = <namespace ID, hash (Principal), hash (Label)>

hash (Principal) must

string chosen by the principal in such a way that hash(Label) is unique

for that Principal.

As an example, the principal can be the provider of a service, the

publisher or the author of a book, the controller

infrastructure, or, in general, the publisher of a VDI.

Publish The act of making a VDI available to users or to a subset of users of the

CONVERGENCE System.

Publisher A user of CONVERGENCE who advertises resources on the

CONVERGENCE

Publish-subscribe

model

A service model based on an asynchronous exchange of messages or

events.

The CONVERGENCE publish subscribe model, encompasses a set of

clients that publish VDIs, which are then

expressed interest in receiving them.

There are basically two approaches to implementing a publish

system: 1) topic

the latter.

broadcast

Initial Protocol Architecture

Overlay Architecture”

A CONVERGENCE device that implements CoMid and CoNet

functionality.

A node will typically be owned by an end-user or by a Service Provider

In the context of IP networks, a collection of tools for forwarding and

routing data packets based on policies defined by network administrators.

From the perspective of the Rights Expression Language, the definition

of Principal is: the User to whom Permissions are Granted in a License.

Depending on the approach chosen to assign Network Identifiers (NIDs)

to CoNet resources, the concept of principal may also

naming purposes. For instance, each principal may be associated with a

string (e.g. assigned by a naming authority), and each CoNet resource

may have a NID of the form:

NID = <namespace ID, hash (Principal), hash (Label)>

hash (Principal) must be unique in the namespace ID

string chosen by the principal in such a way that hash(Label) is unique

for that Principal.

As an example, the principal can be the provider of a service, the

publisher or the author of a book, the controller

infrastructure, or, in general, the publisher of a VDI.

The act of making a VDI available to users or to a subset of users of the

CONVERGENCE System.

A user of CONVERGENCE who advertises resources on the

CONVERGENCE system, thus making them available to subscribers.

A service model based on an asynchronous exchange of messages or

The CONVERGENCE publish subscribe model, encompasses a set of

clients that publish VDIs, which are then forwarded to clients who have

expressed interest in receiving them.

There are basically two approaches to implementing a publish

system: 1) topic-based; and 2) content-based. CONVERGENCE adopts

the latter. The topic-based approach has 2 variants:

broadcast-based. Both use pre-identified topics to send messages, but

Page 13 of 73

A CONVERGENCE device that implements CoMid and CoNet

user or by a Service Provider

In the context of IP networks, a collection of tools for forwarding and

routing data packets based on policies defined by network administrators.

Rights Expression Language, the definition

of Principal is: the User to whom Permissions are Granted in a License.

Depending on the approach chosen to assign Network Identifiers (NIDs)

also be used for such

naming purposes. For instance, each principal may be associated with a

string (e.g. assigned by a naming authority), and each CoNet resource

NID = <namespace ID, hash (Principal), hash (Label)>

unique in the namespace ID, and Label is a

string chosen by the principal in such a way that hash(Label) is unique

As an example, the principal can be the provider of a service, the

 of a traffic lights

The act of making a VDI available to users or to a subset of users of the

A user of CONVERGENCE who advertises resources on the

system, thus making them available to subscribers.

A service model based on an asynchronous exchange of messages or

The CONVERGENCE publish subscribe model, encompasses a set of

forwarded to clients who have

There are basically two approaches to implementing a publish-subscribe

based. CONVERGENCE adopts

based approach has 2 variants: list-based and

identified topics to send messages, but

D5.1 Requirements and Initial Protocol Architecture

their implementations differ. In the list

maintains lists of

certain topic is published, it

the broadcast

the message is broadcasted to all clients and they decide if they are

interested in

previous knowledge of topics. Subscribers indicate their preferences and

the system dynamically inspects published content to decide which

subscribers should be notified. In other terms, the subscription is based

on the actual content of the consid

according to some predefined external criterion (e.g., topic name), but

according to the properties of the events themselves [5]. This approach is

harder to implement

content and users' interests, and to provide good matches.

Real World

Object

An object existing in the real (as opposed to the virtual) world.

Resource A virtual or physical object or service referenced by a VDI, e.g. media,

Real Life Objects,

Scope (in the

context of

routing)

In the context of advertising and routing, the geographical or

administrative domain on which a network function operates (e.g. a well

defined section of the network

or to a subset of nodes that receives advertisements from a service

provider).

Search The act through which a user requests a list of VDIs meeting a set of

search criteria (e.g. specific key value pairs in the metadata, key words,

free text etc.).

Service Level

Agreement (SLA)

An agreement between a service provider and another user of

CONVERGENCE to provide the latter with a service whose quality

matches parameters defined in the agreement.

Subscribe The act whereby a users requests noti

publishes or updates a VDI that satisfies user

criteria (key value pairs in the metadata, free text, key words etc.).

Note: subscription criteria should be formulated in the same way as

search criteri

Subscriber A user of CONVERGENCE who declares his/her interest in being

informed about a VDI. A subscriber can declare her interest using

keywords, free

Initial Protocol Architecture

their implementations differ. In the list-based approach, the system

maintains lists of subscribers for each topic and when a message of a

certain topic is published, it is sent to the corresponding subscribers. In

the broadcast-based approach, when a message is published, the topic of

the message is broadcasted to all clients and they decide if they are

interested in that message. The Content-based approach does not

previous knowledge of topics. Subscribers indicate their preferences and

the system dynamically inspects published content to decide which

subscribers should be notified. In other terms, the subscription is based

on the actual content of the considered events, which are not classified

according to some predefined external criterion (e.g., topic name), but

according to the properties of the events themselves [5]. This approach is

harder to implement - it requires efficient, scalable algorithms to ins

content and users' interests, and to provide good matches.

An object existing in the real (as opposed to the virtual) world.

A virtual or physical object or service referenced by a VDI, e.g. media,

Real Life Objects, persons, internet services.

In the context of advertising and routing, the geographical or

administrative domain on which a network function operates (e.g. a well

defined section of the network - a campus, a shopping mall

or to a subset of nodes that receives advertisements from a service

provider).

The act through which a user requests a list of VDIs meeting a set of

search criteria (e.g. specific key value pairs in the metadata, key words,

t etc.).

An agreement between a service provider and another user of

CONVERGENCE to provide the latter with a service whose quality

matches parameters defined in the agreement.

The act whereby a users requests notification every time another user

publishes or updates a VDI that satisfies user-defined subscription

criteria (key value pairs in the metadata, free text, key words etc.).

Note: subscription criteria should be formulated in the same way as

search criteria) Subscribe is a CoMid function.

A user of CONVERGENCE who declares his/her interest in being

informed about a VDI. A subscriber can declare her interest using

keywords, free-text or by indicating specific VDIs.

Page 14 of 73

based approach, the system

subscribers for each topic and when a message of a

is sent to the corresponding subscribers. In

based approach, when a message is published, the topic of

the message is broadcasted to all clients and they decide if they are

based approach does not require

previous knowledge of topics. Subscribers indicate their preferences and

the system dynamically inspects published content to decide which

subscribers should be notified. In other terms, the subscription is based

ered events, which are not classified

according to some predefined external criterion (e.g., topic name), but

according to the properties of the events themselves [5]. This approach is

it requires efficient, scalable algorithms to inspect

content and users' interests, and to provide good matches.

An object existing in the real (as opposed to the virtual) world.

A virtual or physical object or service referenced by a VDI, e.g. media,

In the context of advertising and routing, the geographical or

administrative domain on which a network function operates (e.g. a well

a campus, a shopping mall, an airport -,

or to a subset of nodes that receives advertisements from a service

The act through which a user requests a list of VDIs meeting a set of

search criteria (e.g. specific key value pairs in the metadata, key words,

An agreement between a service provider and another user of

CONVERGENCE to provide the latter with a service whose quality

fication every time another user

defined subscription

criteria (key value pairs in the metadata, free text, key words etc.).

Note: subscription criteria should be formulated in the same way as

A user of CONVERGENCE who declares his/her interest in being

informed about a VDI. A subscriber can declare her interest using

D5.1 Requirements and Initial Protocol Architecture

Subscription The registration

Timestamp A machine

Trials Organized tests of the CONVERGENCE System in specific business

scenarios.

Un-named data A data resource with no NID.

User Any person or leg

Creator and End

User (in OSI

sense)

In a layered architecture, the term is used to identify an entity exploiting

the service provided by a layer (e.g. CoNet user). If the

provided by the application layer

CONVERGENCE system,

the system delivers.

User ontology An ontology (a set of concepts and their relationships), created by users

of CONVERGENCE when publishing a VDI or subscribing to a VDI.

User Profile A description of the attributes and credentials of a user of the

CONVERGENCE System.

VDI Browser A tool allowing users to browse and consume VDIs on the network as

allowed by their

VDI

Creator/Editor

A tool allowing users to create, publish, read, update and delete VDIs.

VDI Identifier A unique signifier assigned to a VDI or components of a VDI.

Versatile Digital

Item (VDI)

A structured, hierarchically organized, di

more resources and metadata, including a declaration of the parts that

make up the VDI and the links between them.

VDIs can be seen as an extension of the MPEG

Item (DI).

Initial Protocol Architecture

The registration of an interest in a VDI, by a subscriber.

A machine-readable representation of a date and time.

Organized tests of the CONVERGENCE System in specific business

scenarios.

A data resource with no NID.

Any person or legal entity in a Value-Chain connecting (and including)

Creator and End-User possibly via other Users.

In a layered architecture, the term is used to identify an entity exploiting

the service provided by a layer (e.g. CoNet user). If the

provided by the application layer the user is an entity outside the

CONVERGENCE system, who interacts with the system and uses what

the system delivers.

An ontology (a set of concepts and their relationships), created by users

CONVERGENCE when publishing a VDI or subscribing to a VDI.

A description of the attributes and credentials of a user of the

CONVERGENCE System.

A tool allowing users to browse and consume VDIs on the network as

allowed by their access rights.

A tool allowing users to create, publish, read, update and delete VDIs.

A unique signifier assigned to a VDI or components of a VDI.

A structured, hierarchically organized, digital object containing one or

more resources and metadata, including a declaration of the parts that

make up the VDI and the links between them.

VDIs can be seen as an extension of the MPEG-21 concept of a Digital

Item (DI).

Page 15 of 73

of an interest in a VDI, by a subscriber.

readable representation of a date and time.

Organized tests of the CONVERGENCE System in specific business

Chain connecting (and including)

In a layered architecture, the term is used to identify an entity exploiting

the service provided by a layer (e.g. CoNet user). If the service is

user is an entity outside the

interacts with the system and uses what

An ontology (a set of concepts and their relationships), created by users

CONVERGENCE when publishing a VDI or subscribing to a VDI.

A description of the attributes and credentials of a user of the

A tool allowing users to browse and consume VDIs on the network as

A tool allowing users to create, publish, read, update and delete VDIs.

A unique signifier assigned to a VDI or components of a VDI.

gital object containing one or

more resources and metadata, including a declaration of the parts that

21 concept of a Digital

D5.1 Requirements and Initial Protocol Architecture

3 Requirements

3.1 Introduction

The requirements listed below were originally defined in

the last column in the table to include the name of the service/operation

to satisfy the requirement, when applicable.

3.2 List with Requirements

Area Sub-area

VDI

capabilities

High level VDI2

 VDI3

 VDI4

 VDI5

 VDI9

VDI

capabilities

VDI

metadata

VDI25

Initial Protocol Architecture

below were originally defined in Deliverable D2.1. We have modified

to include the name of the service/operation that the system uses

requirement, when applicable.

List with Requirements

Code Requirement Service

VDI2 VDIs shall be capable of

storing information on the

physical location of a resource

Store Content

[4.3.19

VDI3 VDIs shall offer a range of

security/privacy protecting

features including but not

limited to the definition of

access rights, the enforcement

of access rights (trials only),

automatic authentication

(when appropriate), support

for encrypted metadata and

content, digital signatures,

digital forgetting

Authenticate User [

Authenticate

[4.3.1

Create License [

VDI4 Users shall be able to

publish/unpublish a VDI to all

users or to a subset of users of

the CONVERGENCE System

Create License [

VDI5 Users shall be able to

subscribe/unsubscribe to a

VDI or to all VDIs meeting

specified search criteria

Revoke Content [

VDI9 The CONVERGENCE System

shall provide for the storage of

VDIs on the

CONVERGENCE Network

Store Content [

VDI25 A VDI shall be capable of

representing attributes of a

resource specific to that

particular kind of resource

Describe Conte

Page 16 of 73

Deliverable D2.1. We have modified

that the system uses

Service/Operation/Notes

Store Content

4.3.19]

Authenticate User [4.3.3],

Authenticate Content

4.3.1],

Create License [4.3.5]

Create License [4.3.5]

Revoke Content [4.3.17]

Store Content [4.3.19]

Describe Content [4.3.7]

D5.1 Requirements and Initial Protocol Architecture

 VDI26

 VDI27

 VDI28

 VDI29

 VDI30

 VDI31

Initial Protocol Architecture

(e.g. author, owner, time and

date of production, location of

production, current location,

content information etc.) for a

resource

VDI26 A VDI shall be able to express

attributes of a resource

expressed in terms of location

(e.g. the location where a

photograph was taken). Such

attributes shall not be

restricted to the current

physical location of the

resource.

Describe Content [

VDI27 A VDI should be able to

associate a resource with

timestamps identifying the

beginning, the end or the

duration of an attribute of the

resource

Describe Content [

VDI28 A VDI shall be able to

associate a resource with typed

links to other VDIs (e.g.

<derived from>, <name of

VDI>; <full version available

in>, <name of VDI, <has also

been bought by>, <set of

VDIs>

Describe Content [

VDI29 A VDI shall be able to

reference a RWO via an RFID

tag, a bar code or any other

form of unique identifier for

the RWO.

Describe Content [

VDI30 A VDI shall be able to support

user annotations in the form of

key words, texts, visual icons,

spoken text, references to

geographical locations,

temporal data, etc.

Describe Content [

VDI31 A VDI shall be able to specify

the way user annotations

appear in the VDI browser

Present Content [

Page 17 of 73

Describe Content [4.3.7]

Describe Content [4.3.7]

Describe Content [4.3.7]

Describe Content [4.3.7]

Describe Content [4.3.7]

Present Content [4.3.12]

D5.1 Requirements and Initial Protocol Architecture

 VDI32

 VDI33

 Creation/

Publishing

of VDIs

VDI34

 VDI35

 VDI40

Initial Protocol Architecture

(e.g. the visual presentation of

annotations to a photo)

VDI32 A VDI shall be able to support

user-defined tags

Describe Content [

VDI33 VDIs shall support both public

comments (legible to all

subscribers to the VDI) and

private comments (legible only

to one user or a user-defined

subset of users)

Create License[

VDI34 The CONVERGENCE System

shall provide users with an

easy to use tool (VDI

Creator/Editor) allowing them

to create, update, publish and

unpublish a VDI, beginning

with a set of pre-existing

resources and/or VDIs and

including all necessary

metadata, definitions of access

rights, tags etc.

Create Content [

Process Content [

Create License [

Process License [

Describe Content [

Package Content [

Store Content [

VDI35 The VDI Creator/Editor shall

allow a user of the

CONVERGENCE System to

publish/unpublish a VDI to all

users or to a subset of users of

the system

Create License [

VDI40 The VDI Creator/Editor shall

allow users with appropriate

rights to update the metadata

and/or the resources of a VDI

after it has been published.

When a user updates a VDI all

copies of the VDI accessible to

the CONVERGENCE system

shall be automatically updated.

This includes all copies of the

VDI on the CONVERGENCE

network and all copies under

the support of a

CONVERGENCE application

that supports local updating of

VDIs

Process Content [

Process License [

Page 18 of 73

Describe Content [4.3.7]

Create License[4.3.5]

Create Content [4.3.40],

Process Content [4.3.13],

Create License [4.3.5],

Process License [4.3.14],

Describe Content [4.3.7],

Package Content [4.3.10],

Store Content [4.3.19]

Create License [4.3.5]

Process Content [4.3.13],

Process License [4.3.14]

D5.1 Requirements and Initial Protocol Architecture

 VDI41

 VDI42

 Browsing,

subscriptio

n

VDI43

 VDI48

 VDI49

 Search VDI51

 VDI52

 VDI54

Initial Protocol Architecture

VDI41 The VDI Creator/Editor shall

allow users to change access

rights to a VDI after it has

been published

Process License [

VDI42 The VDI Creator/Editor shall

allow users to send a message

(e.g. a warning) to all

subscribers to a given VDI

Request Event [

Store Event [

VDI43 The CONVERGENCE System

shall include an easy to use

tool (VDI Browser) allowing

users to browse, acquire rights

and subscribe to VDIs, to

cancel their subscriptions and

to define attributes of their

subscription (e.g. willingness

to accept messages from a VDI

Creator/Editor, expiry date)

Create License [

Request Event [

VDI48 All applications shall allow

users with the appropriate

rights to download a VDI to a

local device

Deliver Content [

Request Content [

VDI49 The VDI Browser shall allow

users with the appropriate

rights to access the resources

and metadata of a VDI

Request Content [

VDI51 The VDI browser shall allow

users to search for VDIs

meeting specific criteria (e.g.

presence of a specific value for

a specific item of metadata)

and specify actions to be taken

when such a VDI is found

Search Content [

VDI52 Searches shall be semantic

(e.g. a search using synonyms

for keywords as well as

keywords themselves)

Search Content [

VDI54 Searches shall support context

sensitivity including sensitivity

to location (e.g. it shall be

possible to search locations

stored in metadata by

Search Content [

Page 19 of 73

Process License [4.3.14]

Request Event [4.3.16],

Store Event [4.3.20]

Create License [4.3.5],

Request Event [4.3.16]

Deliver Content [4.3.6],

Request Content [4.3.15]

Request Content [4.3.15]

Search Content [4.3.18]

Search Content [4.3.18]

Search Content [4.3.18]

D5.1 Requirements and Initial Protocol Architecture

 VDI55

 VDI56

 Device/

communica

tions

support

VDI60

 Security VDI62

 VDI63

 VDI64

 VDI65

 VDI66

 VDI67

Initial Protocol Architecture

proximity to the center of a

city or a place of interest or an

address)

VDI55 It shall be possible to search

for a VDI with a given RFID

tag or for other comparable

identifiers.

Search Content [

VDI56 It shall be possible for a user to

subscribe to a known VDI or

to all VDI meeting given

search criteria. Users shall be

able to request updates related

to their subscriptions (e.g.

when a subscribed VDI is

updated, when a VDI meeting

the search criteria becomes

available)

Request Event [

VDI60 It shall be possible to transfer a

VDI from one device to

another as a file or as a stream

Deliver Content [

VDI62 A VDI shall allow users to

define access rights for VDIs

Create License [

VDI63 A user shall be able to sign a

VDI

Create License [

VDI64 Users shall be able to

automatically authenticate a

signed VDI before/after they

download the VDI

Authenticate Content

[4.3.1

VDI65 It shall be possible to encrypt

specified fields of a VDI

including content, comments

and metadata

Create License [

Process Content [

VDI66 It shall be possible to create a

VDI in such a way that media

contained in the VDI is

marked with an un-erasable

watermark

Create License [

Process Content [

VDI67 It shall be possible to place a

digital signature on certain

fields of a VDI including

resources, comments and

Create License [

Process Content [

Page 20 of 73

Search Content [4.3.18]

Request Event [4.3.16]

Deliver Content [4.3.6]

Create License [4.3.5]

Create License [4.3.5]

Authenticate Content

4.3.1]

Create License [4.3.5],

Process Content [4.3.13]

Create License [4.3.5],

Process Content [4.3.13]

Create License [4.3.5],

cess Content [4.3.13]

D5.1 Requirements and Initial Protocol Architecture

 VDI68

 Privacy VDI70

 VDI71

 Digital

forgetting

VDI72

 VDI74

 VDI75

 VDI76

 VDI77

Initial Protocol Architecture

metadata

VDI68 The VDI creator and the VDI

browser shall support the use

of “Personal Secure Tokens”

for use in authentication. It

shall be possible to use the

token on any device attached

to the CONVERGENCE

system.

Authenticate User [

VDI70 Users shall be able to send,

share and receive VDIs

without revealing their identity

Create License [

VDI71 The VDI Browser shall allow

users to define minimum

levels of authentication for

VDIs they are willing to access

(e.g. refusing to accept

anonymous VDIs)

Create License [

VDI72 A VDI shall allow an

application that creates a VDI

to define an expiry date for

legal access to the VDI

Create Content [

Create License [

VDI74 The VDI creator shall allow

users to unpublish all copies of

VDIs they have published

Revoke Content [

VDI75 The CONVERGENCE System

shall include a standard tool

providing automated garbage

collection of VDIs residing on

the network that have passed

their expiry date. This implies

that users will no longer be

able to retrieve such VDIs.

Revoke Content [

VDI76 The CONVERGENCE System

shall make it possible to design

an application that

automatically deletes or

encrypts information on a VDI

whenever a given condition is

met (e.g. customer has left

store)

Process Content [

VDI77 The CONVERGENCE system Request Event [

Page 21 of 73

Authenticate User [4.3.3]

Create License [4.3.5]

Create License [4.3.5]

Create Content [4.3.4],

Create License [4.3.5]

Revoke Content [4.3.17]

Revoke Content [4.3.17]

Process Content [4.3.13]

Request Event [4.3.16],

D5.1 Requirements and Initial Protocol Architecture

Framework

capabilities

 FRA2

 FRA8

 FRA9

 FRA10

 FRA12

 CDS CDS2

Network

capabilities

 NET1

Initial Protocol Architecture

shall make it possible to notify

other predefined users, each

time the VDI is accessed by a

user. The notification shall not

contain any personal informa-

tion concerning the user ac-

cessing the VDI

Store Event [

FRA2 The framework shall provide

functionality to generate

unique VDI identifiers

Identify Content [

FRA8 The framework shall have

functionality allowing an

application (with a named

user) to search for a VDI

meeting a given set of search

criteria (operating on VDI

metadata), without referring to

a given physical location

where the VDI is stored

Search Content [

FRA9 The framework shall allow an

application with appropriate

rights to modify/delete a VDI

which has already been

published

Revoke Content [

FRA10 It shall be possible for users to

define a set of VDIs meeting

certain search criteria (e.g.

distance between a physical

location referenced in the

metadata and a second, user-

defined location)

Search Content [

FRA12 The CONVERGENCE System

shall support the use of

persistent names for VDIs

whose referenced resource

changes (e.g. a VDI referring

to the front page of a

newspaper)

Identify Content [

Process Content [

CDS2 Users of the CDS should be

able to select terms from a list

of ontologies

Describe Content [

NET1 The CONVERGENCE

Network (CONET) shall

CONET protocol suite

[Sec

Page 22 of 73

Store Event [4.3.20]

Identify Content [4.3.8]

Search Content [4.3.18]

Revoke Content [4.3.17]

Search Content [4.3.18]

Identify Content [4.3.8],

Process Content [4.3.13]

Describe Content [4.3.7]

CONET protocol suite

[Sec 5]

D5.1 Requirements and Initial Protocol Architecture

 NET2

 NET3

 NET4

 NET5

 NET5

Initial Protocol Architecture

distribute and provide access

to resources identified in the

network by a network

identifier (NID); examples of

such resources include: a VDI;

an electronic document, an

image, a source of information

with a consistent purpose, the

point of access to a service,

and a collection of other

resources.

NET2 It shall be possible to retrieve a

resource without reference to

the location where it is stored

except insofar as such

references are required to

support the scope and policy

routing functionality

CONET routing is based

on names rather than on

location [Sec.

NET3 It shall be possible to replicate

and cache a resource with a

given NID over different

network nodes, while

maintaining the same NID on

all copies; the CONET shall

provide the functionality to

access the “best” (e.g. the

closest) resource in this set. In

other words the NID shall be

treated as an anycast address

and the CONET shall provide

anycast routing functionality

The same named

resource can be cached

on and retrieved from

different CONET Border

nodes

serving nodes

NET4 A Network identifier (NID)

may be either a flat name or

may have a hierarchical

structure (for example to

better support the

aggregation of names).

The NID format supports

both the VLL (flat) and

the PLHB (hierarchical)

namespaces [Sec.

NET5 CONET routing shall not

necessarily rely on a structured

naming scheme

The VLL namespace

allows the use of a flat

naming scheme [Sec.

NET5 Network Identifiers (NID)

shall be designed

independently of VDI

The NID format is

independent of the VDI

identifier. However the

Page 23 of 73

CONET routing is based

on names rather than on

location [Sec. 5.8.1]

The same named-

resource can be cached

on and retrieved from

different CONET Border

nodes, Internal nodes and

serving nodes [Sec. 5.8]

The NID format supports

both the VLL (flat) and

the PLHB (hierarchical)

namespaces [Sec. 5.4]

The VLL namespace

allows the use of a flat

naming scheme [Sec. 5.4]

The NID format is

independent of the VDI

identifier. However the

D5.1 Requirements and Initial Protocol Architecture

 NET6

 NET7

 NET8

 NET9

Initial Protocol Architecture

identifiers.

COMMENT: this does not

preclude using the VDI

identifier as a network

identifier, if possible and

desirable.

NID format is compatible

with the format of the

VDI identifier. This

makes it possible to use

the VDI identifier as a

NID [Sec.

NET6 The CONET needs to rely on a

mechanism to assign unique

network identifiers to a

resource.

This mechanism is

for future work

NET7 The CONET shall support

multi-homing, policy routing,

and scope (advertising and/or

storage in a restricted

geographical/admin area)

COMMENT: future discussion

will examine how far the

concept of multi-homing

currently employed in IP

networks can be adapted for

use in the CONET

COMMENT: To be discussed;

we need to investigate if

support for these functions

should be provided natively by

CONET or if should use

COMID, at least for some

classes of contents, (e.g.

protected content)

Policy routing could be

implemented in the Name

System. Name System

can p

routing information

depending on the

requesting node.

Multi

supported by routing

name mechanism since in

case a serving

different access link

these links can be used to

reach

A Name Syste

supporting a CONET

layer could have a local

scope [Sec.

NET8 The CONET shall natively

support user mobility allowing

users to store and retrieve

resources independently of

their location.

The

mechanism of

layer

transfer

to the user independently

of the user’s temporary

location [Sec.

NET9 The CONET shall provide

means to support a point-to-

point communication between

the upper layer entity that is

sending un-named resources

(service-data) and the

receiving upper layer entity

The source

mechanism of CONET

layer makes it possible to

exchange un

resources between two

specific network

endpoints.

Page 24 of 73

NID format is compatible

with the format of the

VDI identifier. This

makes it possible to use

the VDI identifier as a

NID [Sec. 5.4]

This mechanism is left

for future work.

Policy routing could be

implemented in the Name

System. Name System

can provide different

routing information

depending on the

requesting node.

Multi-homing is natively

supported by routing-by-

name mechanism since in

case a serving-node has

different access links, all

these links can be used to

reach the same NID.

A Name System

supporting a CONET

layer could have a local

scope [Sec. 5.8.1]

The source-routing

mechanism of CONET

layer makes it possible to

transfer a named-resource

to the user independently

of the user’s temporary

location [Sec. 5.8]

The source-routing

mechanism of CONET

layer makes it possible to

exchange un-named

resources between two

specific network

endpoints. [Sec. 5.8]

D5.1 Requirements and Initial Protocol Architecture

 NET10

 NET11

 NET12

 NET13

Initial Protocol Architecture

(e.g. a server). In this way the

CONET can support services

requiring the interactive

exchange of service-data.

COMMENT: This is required

to make it possible to select a

node belonging to the anycast

group identified by a given

NID and to address terminals

not identified by a NID. A

possible way to do this is to

introduce Location Identifier

(LID) and use it to identify

both terminals and service

access points. The LID would

be a unicast address.

NET10 The CONET shall provide a

proper security model making

it possible to decide whether a

CONET user is allowed to

store, retrieve and

delete/update a given resource.

CONET layer security

solutions will be

specified in a subsequent

deliverable

NET11 CONET shall allow the use of

a NID to identify the point of

access to a service

The routing

mechanism of

layer

route un

toward a service access

point identified by a NID

[Sec.

protocol support will be

included in a subsequent

deliverable

NET12 The CONET shall offer

functionality to advertise to the

network that a resource

identified by a NID is stored in

a specified node or in a

specified set of nodes.

The Name system

protocol suite will be

defined in a subsequent

deliverable

NET13 The CONET shall offer

functionality to send a

resource to a specified node.

The source

mechanism of

layer

send a resource to a

Page 25 of 73

CONET layer security

solutions will be

specified in a subsequent

deliverable

The routing-by-name

mechanism of CONET

layer makes it possible to

route un-named data

toward a service access

point identified by a NID

[Sec. 5.8]. The related

protocol support will be

included in a subsequent

deliverable

The Name system

protocol suite will be

defined in a subsequent

deliverable

The source-routing

mechanism of CONET

layer makes it possible to

send a resource to a

D5.1 Requirements and Initial Protocol Architecture

 NET14

 NET15

 NET16

Initial Protocol Architecture

specific network node

[Sec.

NET14 The CONET shall offer

functionality to retrieve a

resource identified by a NID

The CONET layer and

transport algorithm make

it possible to “download”

a

5.8.4

NET15 The CONET shall allow a user

to request a sequence of

updates of a resource

identified by the same, known

NID. A user should thus be

able to request a sequence of

logically resources such as a. a

real time movie, or a sequence

of updates to a document)

COMMENT: Future work will

investigate whether it is

desirable or possible for a user

to request to retrieve a

resource that is not yet

available in the network.

Not supported by

CONET

supported by COMID for

VDIs

NET16 The CONET shall offer

functionality to revoke the

advertising of a resource

identified by a given NID, and

to delete the resource from a

specified storage node

The Name system

protocol suite

functions

a subsequent deliverable

will specify how to

interact with the name

system

and revok

entry that can be used by

CONET routing

(lookup and cache) .

Inserting a new routing

entry in the name system

advertises

a named

deleting the entry makes

it impossible to find the

named

revokes t

named

The

Page 26 of 73

specific network node

[Sec. 5.8]

The CONET layer and

transport algorithm make

it possible to “download”

named-resource[Sec.

5.8.4]

Not supported by

CONET anymore, but

supported by COMID for

VDIs

The Name system

protocol suite and routing

functions to be defined in

a subsequent deliverable

will specify how to

interact with the name

system to insert, update

and revoke a routing

entry that can be used by

CONET routing-by-name

(lookup and cache) .

Inserting a new routing

entry in the name system

advertises the presence of

a named-resource;

deleting the entry makes

it impossible to find the

named-resource, i.e.

revokes the presence of a

named-resources.

he deletion of a named-

D5.1 Requirements and Initial Protocol Architecture

 NET17

 NET18

 NET19

 NET20

Initial Protocol Architecture

resource f

node is a local

functionality, which does

not involve a specific

protocol mechanism

NET17 The CONET shall offer

functionality to update a

previously advertised resource,

identified by a given NID and

stored in a specific node.

To be supported by the

Name system protocol

suite to be defined in a

subsequent deliverable

NET18 The CONET shall make it

possible to control where (or in

which administrative domain)

a resource is stored.

COMMENT: It is not

acceptable that storage could

be completely random. This

may imply that DHT cannot be

used for this purpose.

To be supported by the

Name system protocol

suite to be defined in a

subsequent deliverable

The protocol su

make it possible to

advertise

named

NET19 The CONET shall support

mechanisms to delete a

resource, supporting digital

forgetting and garbage

collection operations.

COMMENT: Future work will

investigate whether this

functionality should be

provided natively by CONET

or whether it will be performed

in cooperation with COMID

(for some classes of contents,

e.g. protected content)

To be supported by the

Name system protocol

suite to be defined in a

subsequent deliverable

The protocol suite will

make it possible to delete

a routing entry making it

impossible to find a

named

related serving node.

Moreover, CONET data

units

include expiry time and

cache obsolescence

information

digital forgetting/garbage

collection and soft

remov

resource from

NET20 The CONET shall support

mechanisms to update

resources stored in any node.

COMMENT: Future work will

Not supported as an

“atomic”

However,

named

sequentially update the

Page 27 of 73

resource from a storage

node is a local

functionality, which does

not involve a specific

protocol mechanism.

To be supported by the

Name system protocol

suite to be defined in a

subsequent deliverable

To be supported by the

Name system protocol

suite to be defined in a

subsequent deliverable.

The protocol suite will

make it possible to

advertise “where” a

named-resource is stored

To be supported by the

Name system protocol

suite to be defined in a

subsequent deliverable.

The protocol suite will

make it possible to delete

a routing entry making it

impossible to find a

named-resource on the

related serving node.

Moreover, CONET data

s [Sec. 5.6.3.1.2]

include expiry time and

cache obsolescence

information enabling

digital forgetting/garbage

collection and soft-state

removal of a named-

resource from cache.

Not supported as an

“atomic” operation.

However, the owner of a

named-resource can

sequentially update the

D5.1 Requirements and Initial Protocol Architecture

 NET21

 NET22

 NET23

Initial Protocol Architecture

investigate whether this

functionality should be

provided natively by CONET

or whether it will be performed

in cooperation with COMID

(for some classes of contents,

e.g. protected content)

named

in any serving node. If

the obsolete version of a

named

in network caches it will

be deleted after

obsolescence

NET21 The CONET shall support the

possibility of accessing a

source of information through

a persistent name, even if the

source consists of a changing

set of VDIs (name persistence)

A source of information

(e.g., a newspaper server)

can send out update

named

releases of the

newspaper) and can name

each update with

same NID. Therefore, a

user may retrieve the last

updated named

by using

NET22 The CONET does not provide

support to access the latest

version of a series of related

VDIs; e.g. referenced by the

same source of information,

and to earlier versions of a

series of related VDIs. This

functionality will be provided

by COMID.

NET23 The CONET shall provide

native support for caching.

Unlike a Content Delivery

Network, CONET will, in

principle, support caching on

every node and also on user

terminals. Users can retrieve a

resource from any node where

it is stored. This shall not

necessarily require a

connection to CONET but

only to a single node storing a

copy of the desired resource.

COMMENT: This requirement

is fundamental to support

CONET border node and

internal node support

caching [Sec.

Page 28 of 73

named-resources stored

in any serving node. If

the obsolete version of a

named-resource is present

in network caches it will

be deleted after its

obsolescence time.

A source of information

(e.g., a newspaper server)

can send out updates of a

named-resource (e.g. new

releases of the

newspaper) and can name

each update with the

same NID. Therefore, a

user may retrieve the last

updated named-resource

by using the same NID.

CONET border node and

internal node support

caching [Sec. 5.8.3].

D5.1 Requirements and Initial Protocol Architecture

 NET24

Initial Protocol Architecture

recently proposed schemes

such as wireless caching,

distributed storage, and

recommendation strategies. By

making the network aware of

the contents that is handling it

is possible to shift traffic away

from congested regions and

balance loads, for instance by

offloading cellular networks,

or by implementing other

distribution strategies

beneficial to network

operators. This functionality

will strengthen network

operators’ control over traffic

generated by so-called over-

the-top players (such as

Facebook, YouTube, etc),

NET24 A network node needs

information about the rights to

replicate/cache resources.

Information contained in

the named

the Cache Obsolescence

Period, support

operation/policies

obsolescence = 0,

nodes do not have the

right to cache

sophisticated policies

could

support. This aspect will

be further

future deliverables.

Page 29 of 73

nformation contained in

the named-data CIU, i.e.

the Cache Obsolescence

Period, supports caching

eration/policies (if

obsolescence = 0,

nodes do not have the

right to cache). More

sophisticated policies

could require Middleware

support. This aspect will

further addressed in

future deliverables.

D5.1 Requirements and Initial Protocol Architecture

4 Middleware Protocols

4.1 Scope of the specification

This section contains a first specification

should be noted that since the MPEG

project partners to be well suited to CONVERGENCE needs, the specification of the

middleware protocols has been performed in a way th

part 4 protocol suite. However, since the CONVERGENCE framework

functionality, we have attempted

MPEG-M part 4 architecture.

CONVERGENCE can be offered as extensions to the existing MPEG

Possible protocols, candidate

project.

4.2 Middleware Overview

The CONERGENCE middleware is based

[1][2][3] as they are evolving to become standards

Part 4 [3] which defines a set of elementary services performing basic operations.

Figure 1 shows an abstract arc

middleware consists of Protocol

Technology Engines and the Orchestrator

Engine is responsible for proces

each time it is called. A Technology Engine is

Middleware providing technological functionalities via a standard API

Engine is a component of the

Technology Engines to provide aggregated functionalities

Initial Protocol Architecture

Protocols Specification

specification

specification of the CONVERGENCE middleware protocols. It

should be noted that since the MPEG-M part 4 protocol suite has been evaluated by the

project partners to be well suited to CONVERGENCE needs, the specification of the

middleware protocols has been performed in a way that builds upon the existing MPEG

part 4 protocol suite. However, since the CONVERGENCE framework

we have attempted to define this functionality in such a way that

M part 4 architecture. This means that the middleware protocols

can be offered as extensions to the existing MPEG-M part 4 protocol suite

candidates for standardization, will be chosen at a later stage in the

Overview

middleware is based on the MPEG-M architecture and protocols

as they are evolving to become standards. The protocols are derived from

which defines a set of elementary services performing basic operations.

shows an abstract architectural scheme of CONVERGENCE. In this scheme,

of Protocol, Technology Engines, and of an Orchestrator (the

Technology Engines and the Orchestrator are illustrated in Deliverable D3.2). A Protocol

Engine is responsible for processing the protocol of the corresponding Elementary Service,

A Technology Engine is a component of the CONVERGENCE

Middleware providing technological functionalities via a standard API

a component of the CONVERGENCE Middleware capable of organizing chains of

Technology Engines to provide aggregated functionalities.

Page 30 of 73

CONVERGENCE middleware protocols. It

M part 4 protocol suite has been evaluated by the

project partners to be well suited to CONVERGENCE needs, the specification of the

at builds upon the existing MPEG-M

part 4 protocol suite. However, since the CONVERGENCE framework needs extra

to define this functionality in such a way that it can fit in the

e middleware protocols defined by

M part 4 protocol suite.

at a later stage in the

M architecture and protocols

derived from MPEG-M

which defines a set of elementary services performing basic operations.

. In this scheme, the

an Orchestrator (the

in Deliverable D3.2). A Protocol

sing the protocol of the corresponding Elementary Service,

component of the CONVERGENCE

Middleware providing technological functionalities via a standard API. An Orchestrator

CONVERGENCE Middleware capable of organizing chains of

D5.1 Requirements and Initial Protocol Architecture

Figure 1: CONVERGENCE Middleware Abstract Architecture

As shown in Figure 1, the Orchestrator

Its role is to act as a service broker

to setup the chain of engines r

of all other available engines

abstraction layer to applications and mak

4.3 Elementary Services

4.3.1 Authenticate Content

4.3.1.1 Description

The Authenticate Content elementary service allows a user to check the authenticity of a VDI

on his/her device, by using the VDI itself and its digital signature. I

not embedded inside the VDI itse

4.3.1.2 Protocol Specification

This elementary service follows the protocol specification of the MPEG

Content elementary service, defined in MPEG

Initial Protocol Architecture

: CONVERGENCE Middleware Abstract Architecture

, the Orchestrator is a special engine that lies above the protocol engines.

a service broker for the middleware. Applications can call the orchestrator

required to process incoming requests. The orchestrator

engines and of how to access them. At the same time, it

abstraction layer to applications and makes middleware operations transparent.

Elementary Services

Authenticate Content

Content elementary service allows a user to check the authenticity of a VDI

on his/her device, by using the VDI itself and its digital signature. If the digital signature is

not embedded inside the VDI itself, it has to be provided separately.

Protocol Specification

This elementary service follows the protocol specification of the MPEG

Content elementary service, defined in MPEG-M Part 4 [3].

Page 31 of 73

above the protocol engines.

call the orchestrator

The orchestrator is aware

. At the same time, it provides an

middleware operations transparent.

Content elementary service allows a user to check the authenticity of a VDI

the digital signature is

This elementary service follows the protocol specification of the MPEG-M Authenticate

D5.1 Requirements and Initial Protocol Architecture

4.3.2 Authenticate Device

4.3.2.1 Description

This elementary service enables a user or any client application to authenticate the device

where it is running. This way, the owner of the content to be used by the application can

sure that the device is trusted.

4.3.2.2 Protocol Specification

This elementary service has the following protocol specification:

Steps Client

1. The client generates an

AuthenticateDeviceRequest

message containing its own certificate

or public key and sends the message to

the Service Provider.

2.

4.3.2.3 Syntax of Protocol Data Format

<!-- ##

<!-- Authenticate Device

<!-- ##

<!-- Definition of AuthenticateDeviceRequestType

<complexType name="AuthenticateDeviceRequestType">

<complexContent>

<extension base="mpegmb:ProtocolRequestType">

<sequence>

<element name="DeviceKey" type=

</sequence>

</extension>

</complexContent>

</complexType>

<!-- Definition of AuthenticateDeviceR

<complexType name="AuthenticateDeviceResponseType">

<complexContent>

<extension base="mpegmb:ProtocolResponseType">

<choice>

<element name="AuthenticateDeviceSuccess"

type="mpegm:ProtocolSuccessType"/>

<element name="AuthenticateDeviceFailu

type="mpegmb:ProtocolFailureType"/>

</choice>

Initial Protocol Architecture

Authenticate Device

This elementary service enables a user or any client application to authenticate the device

where it is running. This way, the owner of the content to be used by the application can

Protocol Specification

This elementary service has the following protocol specification:

Client Service Provider

The client generates an

AuthenticateDeviceRequest

message containing its own certificate

or public key and sends the message to

The SP verifies the digital signature of the

message and responds with an

Authentication Success/Failure message.

Syntax of Protocol Data Format

-->

Authenticate Device -->

-->

AuthenticateDeviceRequestType -->

AuthenticateDeviceRequestType">

<extension base="mpegmb:ProtocolRequestType">

<element name="DeviceKey" type="dsig:KeyInfoType"/>

AuthenticateDeviceResponseType -->

<complexType name="AuthenticateDeviceResponseType">

<extension base="mpegmb:ProtocolResponseType">

<element name="AuthenticateDeviceSuccess"

type="mpegm:ProtocolSuccessType"/>

<element name="AuthenticateDeviceFailure"

type="mpegmb:ProtocolFailureType"/>

Page 32 of 73

This elementary service enables a user or any client application to authenticate the device

where it is running. This way, the owner of the content to be used by the application can be

Service Provider

The SP verifies the digital signature of the

message and responds with an

Authentication Success/Failure message.

D5.1 Requirements and Initial Protocol Architecture

</extension>

</complexContent>

</complexType>

4.3.2.4 Semantics of Protocol Data Format

Semantics of the AuthenticateDeviceRequestType

Name

AuthenticateDeviceRequestType

DeviceKey

Semantics of the AuthenticateDeviceResponseType

Name

AuthenticateDeviceSuccess

AuthenticateDeviceFailure

4.3.3 Authenticate User

4.3.3.1 Description

The Authenticate User elementary service allows the client to confirm a user’s identity. This

service can work with users belonging to different domains using the Single

mechanism.

4.3.3.2 Protocol Specification

This elementary service follows

elementary service, defined in MPEG

Initial Protocol Architecture

Semantics of Protocol Data Format

AuthenticateDeviceRequestType:

Definition

AuthenticateDeviceRequestType Top-level type for Authenticate Entity request

messages.

AuthenticateEntityRequestType

extends ProtocolRequestType

The public key or the certificate of the device to

be authenticated, digitally signed.

AuthenticateDeviceResponseType:

Definition

AuthenticateDeviceSuccess Response in case of success.

AuthenticateDeviceFailure Response in case of failure.

The Authenticate User elementary service allows the client to confirm a user’s identity. This

can work with users belonging to different domains using the Single

Protocol Specification

follows the protocol specification of the MPEG-M Authenticate User

elementary service, defined in MPEG-M Part 4 [3].

Page 33 of 73

Authenticate Entity request

AuthenticateEntityRequestType

ProtocolRequestType.

The public key or the certificate of the device to

be authenticated, digitally signed.

Response in case of success.

Response in case of failure.

The Authenticate User elementary service allows the client to confirm a user’s identity. This

can work with users belonging to different domains using the Single-Sign-On (SSO)

M Authenticate User

D5.1 Requirements and Initial Protocol Architecture

4.3.4 Create Content

4.3.4.1 Description

The Create Content Elementary Service enables the creation of a Versatile Digital Item, by

providing the data it contains, such as

4.3.4.2 Protocol Specification

This elementary service follow

Elementary Service, defined in MPEG

4.3.5 Create License

4.3.5.1 Description

The Create License Elementary Service enables the creating of a license. Licenses

CONVERGENCE are expressed using the MPEG

along with any possible extensions to be defined in D4.2.

A license may either be created directly,

create it, or it may require additional ste

transaction. For example, if a user has pa

confirm that the transaction has been successful and then create the requested license.

4.3.5.2 Protocol Specification

This elementary service follows

Elementary Service, defined in MPEM

4.3.6 Deliver Content

4.3.6.1 Description

The Deliver Content elementary service enables the client to request the delivery of a

specified VDI according to certain terms and conditions, specified in a license. The Deliver

Content service provider does not necessarily have to be the sender or the

content; it is just responsible for performing the transaction between these two parties.

Upon completion of the delivery, the service provider may or may not notify the user who

requested the delivery that it has been fulfilled.

4.3.6.2 Protocol Specification

This elementary service follows

elementary service, defined in MPEG

Initial Protocol Architecture

The Create Content Elementary Service enables the creation of a Versatile Digital Item, by

providing the data it contains, such as resources, descriptions, licenses etc.

Protocol Specification

follows the protocol specification of the MPEG

Elementary Service, defined in MPEG-M Part 4[3].

The Create License Elementary Service enables the creating of a license. Licenses

expressed using the MPEG-21 Rights Expression Language (REL)

along with any possible extensions to be defined in D4.2.

A license may either be created directly, e.g. when it is the owner of a VDI who wants to

create it, or it may require additional steps, as when it is created on demand after a

transaction. For example, if a user has paid to obtain a license, the service provider has to

confirm that the transaction has been successful and then create the requested license.

Protocol Specification

follows the protocol specification of the MPEG

fined in MPEM-M Part 4 [3].

The Deliver Content elementary service enables the client to request the delivery of a

specified VDI according to certain terms and conditions, specified in a license. The Deliver

Content service provider does not necessarily have to be the sender or the

content; it is just responsible for performing the transaction between these two parties.

Upon completion of the delivery, the service provider may or may not notify the user who

requested the delivery that it has been fulfilled.

Specification

follows the protocol specification of the MPEG-

elementary service, defined in MPEG-M Part 4 [3].

Page 34 of 73

The Create Content Elementary Service enables the creation of a Versatile Digital Item, by

the protocol specification of the MPEG-M Create Content

The Create License Elementary Service enables the creating of a license. Licenses in

21 Rights Expression Language (REL) [4]

it is the owner of a VDI who wants to

created on demand after a

a license, the service provider has to

confirm that the transaction has been successful and then create the requested license.

the protocol specification of the MPEG-M Create License

The Deliver Content elementary service enables the client to request the delivery of a

specified VDI according to certain terms and conditions, specified in a license. The Deliver

Content service provider does not necessarily have to be the sender or the receiver of the

content; it is just responsible for performing the transaction between these two parties.

Upon completion of the delivery, the service provider may or may not notify the user who

-M Deliver Content

D5.1 Requirements and Initial Protocol Architecture

4.3.7 Describe Content

4.3.7.1 Description

The Describe Content elementary service enables a user to generate, provide and retrieve

descriptions of VDI content. This service provides a protocol for setting the description of a

VDI, a protocol for getting the description of a VDI

generation of rich semantic descriptions

descriptions are also used by the Search Content elementary service in order to perform

search functions.

4.3.7.2 Protocols Specification

This elementary service extends the protocol specifications of the MPEG

Elementary Service, defined in MPEG

protocol, which is specified below

4.3.7.2.1 Request Named Entity

This sub-clause specifies the

protocol data formats for the Request Named Entity Protocol.

4.3.7.2.1.1 Introduction

The Request Named Entity Protocol is

Instances, Properties) satisfying certain criteria. With the

Entity Protocol, a User can form

• semantic descriptions, which may be sent to

• semantic queries, to search for content using

4.3.7.2.1.2 Protocol Specification

The Request Named Entity protocol is as follows :

Steps Client

1. A User sends a

RequestNamedEntityRequest

message. This message contains at least

a NamedEntityLabel

namespace and entity type.

Initial Protocol Architecture

ibe Content elementary service enables a user to generate, provide and retrieve

descriptions of VDI content. This service provides a protocol for setting the description of a

a protocol for getting the description of a VDI and a protocol that supports the

semantic descriptions of a VDI and its contents. The

also used by the Search Content elementary service in order to perform

Specification

This elementary service extends the protocol specifications of the MPEG-M Describe Content

Elementary Service, defined in MPEG-M Part 4 [3], by adding the Request

is specified below.

Request Named Entity

the interfaces, protocol specifications, syntax and semantics of the

the Request Named Entity Protocol.

Entity Protocol is used to request named entities of ontologies (Classes,

) satisfying certain criteria. With the support of the

a User can form:

, which may be sent to a Describe Content Service Provider

semantic queries, to search for content using a Search Content Service Provider (SP).

Protocol Specification

The Request Named Entity protocol is as follows :

Service Provider

A User sends a

RequestNamedEntityRequest

message. This message contains at least

NamedEntityLabel and possibly a

namespace and entity type.

Page 35 of 73

ibe Content elementary service enables a user to generate, provide and retrieve

descriptions of VDI content. This service provides a protocol for setting the description of a

and a protocol that supports the

. The aforementioned

also used by the Search Content elementary service in order to perform

M Describe Content

, by adding the Request Named Entity

syntax and semantics of the

to request named entities of ontologies (Classes,

support of the Request Named

Service Provider

Service Provider (SP).

D5.1 Requirements and Initial Protocol Architecture

2.

3.

4.3.7.2.1.3 Syntax of Protocol Data Format

<!-- ##

<!-- Request Named Entity

<!-- ##

<!-- Definition of RequestNamedEntityRequest

<element name="RequestNamedEntityRequest

type="RequestNamedEntityRequestType

<complexType name=”RequestNamedEntityRequest

<complexContent>

<extension base="mpegm:ProtocolRequestType">

<sequence>

 <element name="InputQuery" type="NamedEntityRequestInputQueryType"

minOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

</element>

<!-- Definition of Request

<element name="RequestNamedEntityResponse

type="RequestNamedEntityResponseType

<complexType name="RequestNamedEntityResponseType

<complexContent>

<extension base="mpegm:ProtocolResponseType">

<sequence>

<choice>

 <element name="RequestNamedEntity

type="RequestNamedEntitySuccessType

 <element name="RequestNamedEntity

type="mpegm:ProtocolFailureType"/>

</choice>

</sequence>

</extension>

</complexContent>

</complexType>

</element>

Initial Protocol Architecture

If the query specifies a namespace but the

Describe Content SP doesn’t serve it, then

the SP returns a

RequestNamedEntityResponse

with a

RequestNamedEntityFailure

element and the protocol ends here. Else

step 3 is performed.

The SP checks for named entities

matching user criteria in its repository and

returns a

RequestNamedEntityResponse

Syntax of Protocol Data Format

-->

Request Named Entity-->

-->

RequestNamedEntityRequest -->

RequestNamedEntityRequest"

RequestNamedEntityRequestType">

RequestNamedEntityRequestType">

:ProtocolRequestType">

<element name="InputQuery" type="NamedEntityRequestInputQueryType"

RequestNamedEntityResponse-->

RequestNamedEntityResponse"

RequestNamedEntityResponseType">

RequestNamedEntityResponseType">

:ProtocolResponseType">

RequestNamedEntitySuccess"

SuccessType"/>

RequestNamedEntityFailure"

type="mpegm:ProtocolFailureType"/>

Page 36 of 73

If the query specifies a namespace but the

SP doesn’t serve it, then

the SP returns a

RequestNamedEntityResponse

with a

ntityFailure

element and the protocol ends here. Else

checks for named entities

matching user criteria in its repository and

returns a

RequestNamedEntityResponse

<element name="InputQuery" type="NamedEntityRequestInputQueryType"

D5.1 Requirements and Initial Protocol Architecture

<!-- Definition of NamedEntityRequestInputQueryType

<complexType name="NamedEntityRequestInputQueryType">

<complexContent>

<extension base="mpqf:QueryType">

<sequence>

<element name="NamedEntityLabel"

 <element name=”TargetNamespace” type=”anyURI” minOccurs=”0”/>

<element name=”EntityType” type=”anyURI” minOccurs=”0”/>

</sequence>

</extension>

</complexContent>

</complexType>

<!-- Definition of RequestNamedEntity

<complexType name="RequestNamedEntity

<complexContent>

<extension base="mpegm:ProtocolSuccessType">

<sequence>

<element name="ResultSet" type="mpqf:OutputQueryType" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

4.3.7.2.1.4 Semantics of Protocol Data Format

Semantics of the RequestNamedEntityRequest

Name

RequestNamedEntityRequest

RequestNamedEntityRequestType

InputQuery

Semantics of the RequestNamedEntityResponse

Name

RequestNamedEntityResponse

RequestNamedEntityResponseType

Initial Protocol Architecture

NamedEntityRequestInputQueryType-->

<complexType name="NamedEntityRequestInputQueryType">

<extension base="mpqf:QueryType">

<element name="NamedEntityLabel" type="string" minOccurs=”1”/>

<element name=”TargetNamespace” type=”anyURI” minOccurs=”0”/>

<element name=”EntityType” type=”anyURI” minOccurs=”0”/>

RequestNamedEntitySuccessType-->

RequestNamedEntitySuccessType ">

<extension base="mpegm:ProtocolSuccessType">

<element name="ResultSet" type="mpqf:OutputQueryType" minOccurs="0"/>

Semantics of Protocol Data Format

NamedEntityRequest:

Definition

RequestNamedEntityRequest Protocol message sent from the

to request named entities of ontologies stored in

SP’s repositories which meet user conditions.

RequestNamedEntityRequestType Top-level type for Recognize Entity Protocol

request messages.

RequestNamedEntityRequestType

extends mpegm:ProtocolRequestType

User criteria for the recognition of a named

entity. It is of type

NamedEntityRequestInputQueryType

RequestNamedEntityResponse:

Definition

RequestNamedEntityResponse Protocol message sent from the SP to the

with the results of the operation

RequestNamedEntityResponseType Top-level type for Request Named Entity

Page 37 of 73

type="string" minOccurs=”1”/>

<element name=”TargetNamespace” type=”anyURI” minOccurs=”0”/>

<element name=”EntityType” type=”anyURI” minOccurs=”0”/>

<element name="ResultSet" type="mpqf:OutputQueryType" minOccurs="0"/>

Protocol message sent from the client to the SP

named entities of ontologies stored in

user conditions.

level type for Recognize Entity Protocol

RequestNamedEntityRequestType

mpegm:ProtocolRequestType.

User criteria for the recognition of a named

s of type

NamedEntityRequestInputQueryType

Protocol message sent from the SP to the client

with the results of the operation.

level type for Request Named Entity

D5.1 Requirements and Initial Protocol Architecture

Name

RequestNamedEntitySuccess

RequestNamedEntityFailure

Semantics of the NamedEntityRequestInputQueryType

Name

NamedEntityRequestInputQueryTy

pe

NamedEntityLabel

TargetNamespace

EntityType

Semantics of the RequestNamedEntitySuccessType

Name Definition

ResultSet The results of the operation. The result set contains the URI of the named

entity that matches user’s query and available description.

mpqf:OutputQueryType

4.3.8 Identify Content

4.3.8.1 Description

The Identify Content elementary service enables a User to obtain

Versatile Digital Item or any of its components.

4.3.8.2 Protocol Specification

This elementary service follows

Elementary Service, defined in MPEG

Initial Protocol Architecture

Definition

Protocol response messages.

RequestNamedEntityResponseType

extends mpegm:ProtocolResponseType

RequestNamedEntitySuccess Response in case of success. It is of type

RequestNamedEntitySuccessType

ilure Response in case of failure.

NamedEntityRequestInputQueryType:

Definition

NamedEntityRequestInputQueryTy NamedEntityRequestInputQueryTy

pe extends mpqf:QueryType

A free text string entered by the user,

is used to match named entities.

A URI identifying the namespace within

which the returned entities should be defined.

A URI identifying the type of the requested

entity. (Property, class, individual)

RequestNamedEntitySuccessType:

The results of the operation. The result set contains the URI of the named

entity that matches user’s query and available description.

mpqf:OutputQueryType.

The Identify Content elementary service enables a User to obtain a unique

Versatile Digital Item or any of its components.

Protocol Specification

follows the protocol specification of the MPEG-M Identif

Elementary Service, defined in MPEG-M Part 4 [3].

Page 38 of 73

Protocol response messages.

RequestNamedEntityResponseType

mpegm:ProtocolResponseType.

Response in case of success. It is of type

RequestNamedEntitySuccessType

NamedEntityRequestInputQueryTy

mpqf:QueryType.

A free text string entered by the user, which

is used to match named entities.

A URI identifying the namespace within

which the returned entities should be defined.

A URI identifying the type of the requested

entity. (Property, class, individual)

The results of the operation. The result set contains the URI of the named

entity that matches user’s query and available description. It is of type

a unique identifier for a

M Identify Content

D5.1 Requirements and Initial Protocol Architecture

4.3.9 Identify User

4.3.9.1 Description

The Identify User elementary service enables a User to obtain an identifier. T

kept by the service provider, so that it can later be used for retrieving it by a third party (e.g.

an application) using the user’s credentials.

User SP will check the request to deci

user’s identifier when asked. Otherwise, it will return the existing identifier for

4.3.9.2 Protocol Specification

This elementary service has the following protocol specification:

Steps User

1. A User sends an

IdentifyUserRequest

This message may include the public key

of the User, digitally signed, and an

indication whether a new identifier

should be generated, in case there exists

another one.

2.

4.3.9.3 Syntax of Protocol Data Format

<!-- Definition of IdentifyUserReq

<element name="IdentifyUserRequest" type="mpegm:IdentifyUserRequestType"/>

<complexType name="IdentifyUserRequestType">

<complexContent>

<extension base="mpegmb:ProtocolRequestType">

<sequence>

<element name="UserKey" type="dsig:KeyInfoType"

 <element name="RequestNewIdentifier" type="

</sequence>

</extension>

</complexContent>

</complexType>

</element>

<!-- Definition of IdentifyUserResponse

Initial Protocol Architecture

The Identify User elementary service enables a User to obtain an identifier. T

the service provider, so that it can later be used for retrieving it by a third party (e.g.

an application) using the user’s credentials. If the user has already been identified, the Identify

User SP will check the request to decide whether it will issue a new one, setting it to be the

user’s identifier when asked. Otherwise, it will return the existing identifier for

Protocol Specification

This elementary service has the following protocol specification:

Service Provider

A User sends an

IdentifyUserRequest message.

This message may include the public key

of the User, digitally signed, and an

indication whether a new identifier

should be generated, in case there exists

The Identify UserService Provider checks

the validity of the user’s public key and

sends back an

IdentifyUserResponse

which, in case of success, contains the

generated (or existing) identifier.

Syntax of Protocol Data Format

Definition of IdentifyUserRequest -->

<element name="IdentifyUserRequest" type="mpegm:IdentifyUserRequestType"/>

<complexType name="IdentifyUserRequestType">

<extension base="mpegmb:ProtocolRequestType">

<element name="UserKey" type="dsig:KeyInfoType" minOccurs="0"/>

"RequestNewIdentifier" type="boolean" minOccurs="0"/>

Definition of IdentifyUserResponse -->

Page 39 of 73

The Identify User elementary service enables a User to obtain an identifier. This identifier is

the service provider, so that it can later be used for retrieving it by a third party (e.g.

the user has already been identified, the Identify

de whether it will issue a new one, setting it to be the

user’s identifier when asked. Otherwise, it will return the existing identifier for the user.

UserService Provider checks

the validity of the user’s public key and

sends back an

IdentifyUserResponse message,

which, in case of success, contains the

generated (or existing) identifier.

<element name="IdentifyUserRequest" type="mpegm:IdentifyUserRequestType"/>

minOccurs="0"/>

boolean" minOccurs="0"/>

D5.1 Requirements and Initial Protocol Architecture

<element name="IdentifyUserResponse"

type="mpegm:IdentifyUserResponseType"/>

<complexType name="IdentifyUserResponseType">

<complexContent>

<extension base="mpegmb:ProtocolResponseType">

<choice>

<element name="IdentifyUser

type="mpegm:IdentifyUserResponse

<element name="IdentifyUse

type="mpegmb:ProtocolFailureType"/>

</choice>

</extension>

</complexContent>

</complexType>

<complexType name="Identify

<complexContent>

<extension base="mpegmb:ProtocolSuccessType">

<sequence>

<element name="UserIdentifier

</sequence>

</extension>

</complexContent>

</complexType>

4.3.9.4 Semantics of Protocol Data Format

Semantics of IdentifyUserRequest

Name

IdentifyUserRequest

IdentifyUserRequestType

UserKey

RequestNewIdentifier

Semantics of IdentifyUserResponse

Name

IdentifyUserResponse

Initial Protocol Architecture

<element name="IdentifyUserResponse"

UserResponseType"/>

<complexType name="IdentifyUserResponseType">

<extension base="mpegmb:ProtocolResponseType">

<element name="IdentifyUserResponseSuccess"

ResponseSuccessType"/>

<element name="IdentifyUserResponseFailure"

type="mpegmb:ProtocolFailureType"/>

<complexType name="IdentifyUserResponseSuccessType">

<extension base="mpegmb:ProtocolSuccessType">

UserIdentifier" type="mpeg7:UniqueIDType"/>

Semantics of Protocol Data Format

IdentifyUserRequest:

Definition

The Request to Identify some User

IdentifyUserRequestType Top-level type for IdentifyUserRequest,

which extends the generic

ProtocolRequestType.

The digitally signed public key of the user (or

even the whole certificate).

 Indicates whether a new identifier

generated in case there is already one for this

user.

IdentifyUserResponse:

Definition

 The Response of the service.

successfully identified, it will contain the user

identifier.

Page 40 of 73

The Request to Identify some User

IdentifyUserRequest,

which extends the generic

ProtocolRequestType.

The digitally signed public key of the user (or

Indicates whether a new identifier must be

generated in case there is already one for this

service. If the user has been

, it will contain the user

D5.1 Requirements and Initial Protocol Architecture

IdentifyUserResponseType

UserIdentifier

IdentifyUserResponseSuccess

IdentifyUserResponseFailure

4.3.10 Inject Content

4.3.10.1 Description

The purpose of the Inject Content Elementary Service is to make a VDI discoverable via s

mantic search operations. The service may be called

system when a new VDI is published

It orchestrates calls to the following technology engines:

- Digital Item TE and Metadata TE

of the VDI and are part of the standard MPEG

- Overlay TE: this TE broadcasts metada

level information (see D4.1), for VDIs of a given semantic type, to the

work of peers responsible for maintaining that specific semantic type

update local status tables and manage

semantic search operations. Th

plements special algorithms to distribute metadata inside the semantic overlay. It will

be further specified in D3.2

tural concepts specified in D3.1.

4.3.10.2 Protocol Specification

Steps User

1. A User sends an

InjectContentRequest

This message includes a reference to the

VDI.

2.

Initial Protocol Architecture

IdentifyUserResponseType Top-level type for

IdentifyUserResponse,

the generic ProtocolResponseType.

A unique identifier issued to the user.

IdentifyUserResponseSuccess Response in case of success.

IdentifyUserResponseFailure Response in case of failure.

The purpose of the Inject Content Elementary Service is to make a VDI discoverable via s

The service may be called by users or activated automatically by the

new VDI is published.

calls to the following technology engines:

Digital Item TE and Metadata TE: these TEs access and extract the metadata portion

are part of the standard MPEG-M part 2.

this TE broadcasts metadata, VDI identifiers, expiry date and other VDI

level information (see D4.1), for VDIs of a given semantic type, to the

work of peers responsible for maintaining that specific semantic type

update local status tables and manages pointers so that the VDIs are discoverable by

semantic search operations. The technology engine exposes a standard

algorithms to distribute metadata inside the semantic overlay. It will

be further specified in D3.2. The design of the TE will be based on the basic archite

ified in D3.1.

Protocol Specification

Service Provider

A User sends an

InjectContentRequest message.

This message includes a reference to the

The Inject Content Service

replies with a Success/Failure message.

Page 41 of 73

level type for

IdentifyUserResponse, which extends

ProtocolResponseType.

A unique identifier issued to the user.

The purpose of the Inject Content Elementary Service is to make a VDI discoverable via se-

automatically by the

access and extract the metadata portion

ta, VDI identifiers, expiry date and other VDI-

level information (see D4.1), for VDIs of a given semantic type, to the overlay net-

work of peers responsible for maintaining that specific semantic type. It proceeds to

VDIs are discoverable by

standard API but im-

algorithms to distribute metadata inside the semantic overlay. It will

the TE will be based on the basic architec-

The Inject Content Service Provider

replies with a Success/Failure message.

D5.1 Requirements and Initial Protocol Architecture

4.3.10.3 Syntax of Protocol Data Format

<!-- ##

<!-- Inject Content

<!-- ##

<!-- Definition of InjectContentRequest

<element name="InjectContentRequest

<complexType name="InjectContentRequestType

<complexContent>

<extension base="mpegm:ProtocolRequestType">

<sequence>

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<!-- Definition of InjectContentResponse

<element name="InjectContentResponse"

type="conv:InjectContentResponseType"/>

<complexType name="InjectContentResponseType">

<extension base="mpegm:ProtocolResponseType">

<choice>

<element name="InjectContentSuccess" type="mpegm:ProtocolSuccessType"/>

<element name="InjectContentFailure" type="mpegm:ProtocolFailureType"/>

</choice>

</extension>

</complexType>

4.3.10.4 Semantics of Protocol Data Format

Semantics of the InjectContentRequest

Name

InjectContentRequest

Semantics of the InjectContentResponse

Name

InjectContentResponse

InjectContentSuccess

InjectContentFailure

Initial Protocol Architecture

Syntax of Protocol Data Format

-->

Inject Content -->

-->

Definition of InjectContentRequest -->

InjectContentRequest" type="conv:InjectContentRequestType

InjectContentRequestType">

<extension base="mpegm:ProtocolRequestType">

ContentEntity" type="mpegm:ContentEntityType"/>

Definition of InjectContentResponse -->

<element name="InjectContentResponse"

type="conv:InjectContentResponseType"/>

InjectContentResponseType">

<extension base="mpegm:ProtocolResponseType">

<element name="InjectContentSuccess" type="mpegm:ProtocolSuccessType"/>

<element name="InjectContentFailure" type="mpegm:ProtocolFailureType"/>

Semantics of Protocol Data Format

InjectContentRequest

Definition

 The Request to Inject Content

InjectContentResponse

Definition

InjectContentResponse The Response indicating whether the Content

has been successfully injected or not

 Response in case of success

 Response in case of failure

Page 42 of 73

InjectContentRequestType"/>

ContentEntity" type="mpegm:ContentEntityType"/>

<element name="InjectContentSuccess" type="mpegm:ProtocolSuccessType"/>

<element name="InjectContentFailure" type="mpegm:ProtocolFailureType"/>

The Request to Inject Content

whether the Content

has been successfully injected or not

D5.1 Requirements and Initial Protocol Architecture

4.3.11 Package Content

4.3.11.1 Description

The Package Content elementary service is used to prepare a VDI for delivery. That is, this

service is responsible for creating a file out of the VDI, or

fragments, and binding it, to the transport protocol.

4.3.11.2 Protocol Specification

This elementary service follows

Elementary Service, defined in MPEG

4.3.12 Present Content

4.3.12.1 Description

The Present Content elementary service enables a user to set the stylesheet for the

presentation of a VDI. The service provider will apply the stylesheet

corresponding XHTML document.

4.3.12.2 Protocol Specification

This elementary service has the following protocol specification:

Steps User

1. A User sends a

PresentContentRequest

This message includes the VDI, plus the

transformations that are to be done or the

CSS to be applied.

2.

Initial Protocol Architecture

The Package Content elementary service is used to prepare a VDI for delivery. That is, this

service is responsible for creating a file out of the VDI, or generating

to the transport protocol.

Specification

follows the protocol specification of the MPEG-M Package Content

Elementary Service, defined in MPEG-M Part 4 [3].

The Present Content elementary service enables a user to set the stylesheet for the

The service provider will apply the stylesheet to the VDI and return the

corresponding XHTML document.

Protocol Specification

elementary service has the following protocol specification:

Service Provider

A User sends a

PresentContentRequest message.

This message includes the VDI, plus the

transformations that are to be done or the

The Present ContentService Provider is

able to display to the user contracts or

parts thereof. Upon completion of the

task, the SP sends back a message

PresentContentResponse

XHTML version of the presented content

or a reference to a xml document where

the CSS has been applied.

Page 43 of 73

The Package Content elementary service is used to prepare a VDI for delivery. That is, this

generating a stream of VDI

M Package Content

The Present Content elementary service enables a user to set the stylesheet for the

the VDI and return the

ContentService Provider is

able to display to the user contracts or

parts thereof. Upon completion of the

task, the SP sends back a message

PresentContentResponse with the

XHTML version of the presented content

or a reference to a xml document where

the CSS has been applied.

D5.1 Requirements and Initial Protocol Architecture

4.3.12.3 Syntax of Protocol Data Format

<!-- ##

<!-- Present Content

<!-- ##

<!-- Definition of PackageContentRequest

<element name="PresentContentRequest"

type="conv:PresentContentRequestType"/>

<complexType name="PresentContentRequestType ">

<complexContent>

<extension base="mpegm:ProtocolRequestType">

<sequence>

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

<choice>

<element name="xsl:transform" />

<element name="CSSStylesheet

</choice>

</sequence>

</extension>

</complexContent>

</complexType>

<!-- Definition of PresentContentResponse

<element name="PresentContentResponse"

type="conv:PresentContentResponseType"/>

<complexType name="PresentContentResponseType">

<complexContent>

<extension base="mpegm:ProtocolResponseType">

<choice>

<element ref="xhtml:html"/>

<element name="ContentRepresentation

</choice>

</extension>

</complexContent>

</complexType>

4.3.12.4 Semantics of

Semantics of the PresentContentRequest

Name

PresentContentRequest

ContentEntity

CSSStylesheet

xsl:transform

Initial Protocol Architecture

Syntax of Protocol Data Format

-->

Present Content -->

-->

Definition of PackageContentRequest -->

<element name="PresentContentRequest"

type="conv:PresentContentRequestType"/>

<complexType name="PresentContentRequestType ">

extension base="mpegm:ProtocolRequestType">

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

<element name="xsl:transform" />

CSSStylesheet" type="anyURI" />

Definition of PresentContentResponse -->

<element name="PresentContentResponse"

ype="conv:PresentContentResponseType"/>

<complexType name="PresentContentResponseType">

<extension base="mpegm:ProtocolResponseType">

<element ref="xhtml:html"/>

ContentRepresentation" type="anyURI"/>

Semantics of Protocol Data Format

PresentContentRequest

Definition

PresentContentRequest The Request to Present some Content

A VDI or a reference to it

A CSS document used to present the VDI.

The XSL transformation to be applied in order to

create an XHTML document out of the

Page 44 of 73

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

some Content

A CSS document used to present the VDI.

The XSL transformation to be applied in order to

create an XHTML document out of the VDI.

D5.1 Requirements and Initial Protocol Architecture

Semantics of the PresentContentResponse

Name

PresentContentResponse

xhtml:html

ContentRepresentation

4.3.13 Process Content

4.3.13.1 Description

The Process Content elementary service enabl

result will be a new VDI, following the semantics of the update VDI (i.e. keeping the same

sequence identifier as its predecessor).

4.3.13.2 Protocol Specification

This elementary service follows

service, defined in MPEG-M Part 4

4.3.14 Process License

4.3.14.1 Description

The Process License elementary ser

existing one. The new license may refer to different resources, different principals or

based on its predecessor template.

4.3.14.2 Protocol Specification

This elementary service follows

service, defined in MPEG-M Part 4

4.3.15 Request Content

4.3.15.1 Description

A user uses the Request Content elementary servi

Initial Protocol Architecture

PresentContentResponse

Definition

PresentContentResponse The Response containing the Content in a

presentable form

The Content (VDI) provided at the request,

formatted as an XHTML document

ContentRepresentation A URI with an xml document containing the

VDI and the CSS given as input.

The Process Content elementary service enables a user to modify the content

result will be a new VDI, following the semantics of the update VDI (i.e. keeping the same

sequence identifier as its predecessor).

Protocol Specification

follows the protocol specification of the Process Content elementary

M Part 4 [3].

The Process License elementary service enables a user to create a license, based on an already

existing one. The new license may refer to different resources, different principals or

based on its predecessor template.

Protocol Specification

follows the protocol specification of the Process License elementary

M Part 4[3].

Request Content elementary service to request permission to access a VDI.

Page 45 of 73

The Response containing the Content in a

The Content (VDI) provided at the request,

formatted as an XHTML document

URI with an xml document containing the

VDI and the CSS given as input.

es a user to modify the content of a VDI. The

result will be a new VDI, following the semantics of the update VDI (i.e. keeping the same

the protocol specification of the Process Content elementary

vice enables a user to create a license, based on an already

existing one. The new license may refer to different resources, different principals or maybe

l specification of the Process License elementary

permission to access a VDI.

D5.1 Requirements and Initial Protocol Architecture

4.3.15.2 Protocol Specification

This elementary service will follow the protocol specification

Content elementary service, defined in MPEG

4.3.16 Request Event

4.3.16.1 Description

The Request Event elementary service enables a user to ask for an Event Report or an Event

Report Request associated with a certain VDI.

4.3.16.2 Protocol Specification

This elementary service follows

elementary service, defined in MPEG

4.3.17 Revoke Content

4.3.17.1 Description

The Revoke Content elementary service enables a user to revoke, i.e. to

unpublish/unsubscribe a VDI.

responsible for managing the

content, the user has to have the appropriate rights.

4.3.17.2 Protocol Specification

Steps User

1. A User sends a

RevokeContentRequest

This message includes a reference to the

VDI and additionally, it may include a

license, a revocation date and a

revocation reason.

2.

4.3.17.3 Syntax of Protocol

<!-- ##

<!-- Revoke Content

<!-- ##

Initial Protocol Architecture

Protocol Specification

This elementary service will follow the protocol specification for the MPEG

Content elementary service, defined in MPEG-M Part 4 [3].

The Request Event elementary service enables a user to ask for an Event Report or an Event

Report Request associated with a certain VDI.

Protocol Specification

follows the protocol specification for the MPEG

elementary service, defined in MPEG-M Part 4 [3].

The Revoke Content elementary service enables a user to revoke, i.e. to

VDI. Revoke Content messages are delivered to the peer

managing the semantic type of the VDI to be revoked.

r has to have the appropriate rights.

Protocol Specification

Service Provider

A User sends a

RevokeContentRequest message.

This message includes a reference to the

VDI and additionally, it may include a

license, a revocation date and a

The RevokeContentService Provider

replies with a Success/Failure message.

rotocol Data Format

-->

Revoke Content -->

-->

Page 46 of 73

the MPEG-M Request

The Request Event elementary service enables a user to ask for an Event Report or an Event

the MPEG-M Request Event

The Revoke Content elementary service enables a user to revoke, i.e. to

messages are delivered to the peers

 In order to revoke

The RevokeContentService Provider

replies with a Success/Failure message.

D5.1 Requirements and Initial Protocol Architecture

<!-- Definition of Revoke

<element name="RevokeContentRequest

<complexType name="RevokeContentRequestType

<complexContent>

<extension base="mpegm:ProtocolRequestType">

<sequence>

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

<element name="DateOfRevocation" type="dateTim

<element name="RevokeReason" type="RevokeReasonType"

minOccurs="0"/>

<element name="LicenseEntity" type="LicenseEntityType"

minOccurs=”0”/>

</sequence>

</extension>

</complexContent>

</complexType>

<!-- Definition of RevokeContentRespo

<element name="RevokeContentResponse"

type="conv:RevokeContentResponseType"/>

<complexType name="RevokeContentResponseType">

<extension base="mpegm:ProtocolResponseType">

<choice>

<element name="RevokeContentSuccess" type="mpegm:ProtocolSuccessType

<element name="RevokeContentFailure" type="mpegm:ProtocolFailureType"/>

</choice>

</extension>

</complexType>

4.3.17.4 Semantics of

Semantics of the RevokeContentRequest

Name

RevokeContentRequest

ContentEntity

DateOfRevocation

RevokeReason

LicenseEntity

Semantics of the RevokeContentResponse

Name

RevokeContentResponse

Initial Protocol Architecture

RevokeContentRequest -->

RevokeContentRequest" type="conv:RevokeContentRequest

RevokeContentRequestType">

<extension base="mpegm:ProtocolRequestType">

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

<element name="DateOfRevocation" type="dateTime" minOccurs="0"/>

<element name="RevokeReason" type="RevokeReasonType"

<element name="LicenseEntity" type="LicenseEntityType"

Definition of RevokeContentResponse -->

<element name="RevokeContentResponse"

type="conv:RevokeContentResponseType"/>

<complexType name="RevokeContentResponseType">

<extension base="mpegm:ProtocolResponseType">

<element name="RevokeContentSuccess" type="mpegm:ProtocolSuccessType

<element name="RevokeContentFailure" type="mpegm:ProtocolFailureType"/>

Semantics of Protocol Data Format

RevokeContentRequest

Definition

 The Request to Revoke some Content

A VDI or a reference to it

The date that this Content has been revoked

A RevokeReasonType indicating the reason

this content has been revoked

A LicenseEntityType

information on the rights of the user requesting

to revoke the Content

RevokeContentResponse

Definition

RevokeContentResponse The Response indicating whether the Content

Page 47 of 73

RevokeContentRequestType"/>

<element name="ContentEntity" type="mpegm:ContentEntityType"/>

e" minOccurs="0"/>

<element name="RevokeContentSuccess" type="mpegm:ProtocolSuccessType"/>

<element name="RevokeContentFailure" type="mpegm:ProtocolFailureType"/>

The Request to Revoke some Content

The date that this Content has been revoked

indicating the reason

this content has been revoked

LicenseEntityType providing

information on the rights of the user requesting

The Response indicating whether the Content

D5.1 Requirements and Initial Protocol Architecture

RevokeContentSuccess

RevokeContentFailure

4.3.18 Search Content

4.3.18.1 Description

The Search Content elementary service enables u

CONVERGENCE.

The search query may use:

• unstructured criteria. Free text description.

• semi-structured criteria.

value is free text.

• structured criteria. Property

model.

In the latter two cases, the user may use the Describe Content elementary service to request

entities of existing models and construct the criteria

4.3.18.2 Protocol Specification

This elementary service follows the protocol specification

service, defined in MPEG-M Part 4

4.3.19 Store Content

4.3.19.1 Description

The Store Content elementary service allows for the transfer and the storage of a VDI in a

remote (or local) device.

4.3.19.2 Protocol Specification

This elementary service follows

elementary service, defined in MPEG

Initial Protocol Architecture

has been revoked

 Response in case of success

 Response in case of failure

The Search Content elementary service enables users to search for VDIs published in

. Free text description.

structured criteria. Property-value pairs where property is based on a model and

Property-value pairs where property and value

ter two cases, the user may use the Describe Content elementary service to request

entities of existing models and construct the criteria for the query.

Protocol Specification

This elementary service follows the protocol specification for the Search Conten

M Part 4 [3].

The Store Content elementary service allows for the transfer and the storage of a VDI in a

Protocol Specification

follows the protocol specification of the MPEG

in MPEG-M Part 4 [3].

Page 48 of 73

VDIs published in

value pairs where property is based on a model and

are both based on a

ter two cases, the user may use the Describe Content elementary service to request

the Search Content elementary

The Store Content elementary service allows for the transfer and the storage of a VDI in a

the protocol specification of the MPEG-M Store Content

D5.1 Requirements and Initial Protocol Architecture

4.3.20 Store Event

4.3.20.1 Description

The Store Event elementary service enables a user to store an Event Report Request or an

Event Report that may occur o

4.3.20.2 Protocol Specification

This elementary service follows

service, defined in MPEG-M Part 4

Initial Protocol Architecture

The Store Event elementary service enables a user to store an Event Report Request or an

Event Report that may occur on a device.

Protocol Specification

follows the protocol specification of the Store Event elementary

M Part 4 [3].

Page 49 of 73

The Store Event elementary service enables a user to store an Event Report Request or an

the protocol specification of the Store Event elementary

D5.1 Requirements and Initial Protocol Architecture

5 Network Protocols Specification

5.1 Scope of the specification

This section specifies the COnvergence NETwork (CONET) protocols and algorithms that

support the CONET API defined in

This deliverable specifies CONET protocols and algorithms used to retrieve named

to support the GET operation described in

functionality (e.g. the “send-to” API primitive), including delivery of u

to-multipoint data distribution (for video streaming), and data

We point out that the CONET protocols and algorithms described here will not be

implemented in the phase 1, track 1 of the planned experimentation (see D

Work), but only in the following phases

As shown in Figure 2, in phase 1, track 1, CONET functionality are made available to the

middleware level by the middleware CONET Technology

based on a plain TCP/IP network. The CONET TE is used by middleware Engines to perform

“raw” CONET operations (i.e., Advertise, Get, SendToName, etc.), as specified in

operations enable a middleware Engine to

named-resources. For instance, middleware Engines can use the CONET TE to store and

advertise VDIs or any other named

middleware entities. Middleware Engines

named-resources.

TCP/IP

CONET

TE

Track

Engines

Applications

Raw CONET

operations

Socket API

CONET

Engine

API

Figure 2: software architecture and scope of this specification section

Initial Protocol Architecture

Network Protocols Specification

Scope of the specification

This section specifies the COnvergence NETwork (CONET) protocols and algorithms that

support the CONET API defined in [5].

CONET protocols and algorithms used to retrieve named

to support the GET operation described in [5]. Future deliverables will describe additional

to” API primitive), including delivery of un-

multipoint data distribution (for video streaming), and data-centric security.

that the CONET protocols and algorithms described here will not be

implemented in the phase 1, track 1 of the planned experimentation (see D

Work), but only in the following phases, described in the Description of Work.

, in phase 1, track 1, CONET functionality are made available to the

middleware level by the middleware CONET Technology Engine (CONET TE), which is

based on a plain TCP/IP network. The CONET TE is used by middleware Engines to perform

“raw” CONET operations (i.e., Advertise, Get, SendToName, etc.), as specified in

dleware Engine to directly exploit CONET functionality to handle

resources. For instance, middleware Engines can use the CONET TE to store and

advertise VDIs or any other named-resources, so as to make them accessible by remote

iddleware Engines can also use the CONET TE to retrieve advertised

TCP/IP

Track 1

Engines

SMILE

(Axis)

CONET protocols

algorithms

CONET

TE

Track 2

Engines

Applications Applications

SOAP

operations

Scope of this

section

M
id

d
le

w
a

re

: software architecture and scope of this specification section

Page 50 of 73

This section specifies the COnvergence NETwork (CONET) protocols and algorithms that

CONET protocols and algorithms used to retrieve named-data, i.e.

. Future deliverables will describe additional

-named data, point-

centric security.

that the CONET protocols and algorithms described here will not be

implemented in the phase 1, track 1 of the planned experimentation (see Description of

described in the Description of Work.

, in phase 1, track 1, CONET functionality are made available to the

Engine (CONET TE), which is

based on a plain TCP/IP network. The CONET TE is used by middleware Engines to perform

“raw” CONET operations (i.e., Advertise, Get, SendToName, etc.), as specified in [5]. These

exploit CONET functionality to handle

resources. For instance, middleware Engines can use the CONET TE to store and

resources, so as to make them accessible by remote

also use the CONET TE to retrieve advertised

CONET protocols and

algorithms

SMILE

Applications

CONET API

: software architecture and scope of this specification section

D5.1 Requirements and Initial Protocol Architecture

Middleware Engines will use

The SOAP implementation is provided by the SMILE framework

an Axis-like interface and uses the plain TCP/IP

In the subsequent experimentation phases

framework will be modified so as to interwork with the CONET protocols and algorithms

specified in this deliverable. In this way, t

will not require changes in the middleware and application software developed during phase

1, track 1.

5.2 Network Overview

As described in [5] and shown in

interconnects underlying CONET Sub Networks (CSN), in the same way as IP interconnects

sub-networks.

end-node

CSN n.1
(overlay link)

BN

Path state:

[UDP/IP end

[IP BN, IP BN]

[MAC BN, MAC SN]

A CONET sub-network interconnects two or more CONET nodes,

technology to transfer CONET Information Units (CIUs) . Under

be: point-to-point Layer 2 links (e.g. PPP), Layer 2 networks (e.g., Ethernet), overlay links

(e.g. UDP over IP) or arbitrarily large IP networks, enriched wit

functionality. In this latter case we talk about IP

CONET nodes are “logically”

internal-nodes (INs), depending on their

Initial Protocol Architecture

 SOAP to exchange the XML messages defined in section

he SOAP implementation is provided by the SMILE framework [6], which in turn

like interface and uses the plain TCP/IP network.

experimentation phases in track 2, the CONET TE and the SMILE

framework will be modified so as to interwork with the CONET protocols and algorithms

In this way, the migration from a TCP/IP to a CONET

require changes in the middleware and application software developed during phase

Network Overview

and shown in Figure 3, CONET is an inter-networking architecture that

nects underlying CONET Sub Networks (CSN), in the same way as IP interconnects

border-nodes

SN

serving-node

IN

internal-node

R

plain IP router

BN

CSN n.2
(IPv4 network)

CSN n.3
(L2 link)

CSN n.1
(overlay link)

SN

R
BN BN

BN

[UDP/IP end-node, UDP/IP BN] – CSN n.1

[IP BN, IP BN] – CSN n.2

[MAC BN, MAC SN] - CSN n.3

Name

Sys.

Figure 3: CONET architecture

interconnects two or more CONET nodes, using an

transfer CONET Information Units (CIUs) . Under-CONET technologies can

point Layer 2 links (e.g. PPP), Layer 2 networks (e.g., Ethernet), overlay links

(e.g. UDP over IP) or arbitrarily large IP networks, enriched wit

functionality. In this latter case we talk about IP-CSN (see Section 5.7.3).

“logically” classified as end-nodes, serving-nodes, border

), depending on their function in the CONET.

Page 51 of 73

nge the XML messages defined in section 4.3.

which in turn provides

track 2, the CONET TE and the SMILE

framework will be modified so as to interwork with the CONET protocols and algorithms

he migration from a TCP/IP to a CONET network

require changes in the middleware and application software developed during phase

networking architecture that

nects underlying CONET Sub Networks (CSN), in the same way as IP interconnects

node

using an under-CONET

CONET technologies can

point Layer 2 links (e.g. PPP), Layer 2 networks (e.g., Ethernet), overlay links

(e.g. UDP over IP) or arbitrarily large IP networks, enriched with content-centric

order-nodes (BNs) and

D5.1 Requirements and Initial Protocol Architecture

End-nodes are devices that request named

the best serving-nodes.

Serving-nodes are the original sources of named

Border-nodes are devices that: i) route

serving-nodes; ii) route back data toward the requesting end

caching functionality.

Finally, internal-nodes are extended IP r

network caching; these routers

5.3 Protocol stack

Figure 4 describes the protocol stack below the CONET API.

The end-nodes implement transport

control, and providing the CONET API

Transport

Algorithm

every node

only end-nodes

Figure

Every CONET node implements the CONET and the

The CONET protocol is connectionless, handles CONET data

specific functionality, like packetization, caching, security, routing by name and by path

The CONET protocol layer is divided in

denoted as "CONET Information Unit

An Under-CONET layer is any technology able to transfer a carrier

network or link end-points. Therefore, an Under

layer, or network-layer or transport

technology, we enhance the IP layer so as to integrate part of CONET protocol functionality

within IP (this is the reason why we use the tag IP* in

a CONET IPv4 Option (see Section

CONET IPv6 Extension Header, so as to extend our solution to IPv6.

Initial Protocol Architecture

nodes are devices that request named-resources and route-by-name the requests towards

nodes are the original sources of named-resources.

nodes are devices that: i) route-by-name requests of named-resources towards the best

nodes; ii) route back data toward the requesting end-nodes; iii) provide in

nodes are extended IP routers that are content-aware and able to support in

these routers use plain IP mechanisms to forward CONET data units.

ocol stack below the CONET API.

nodes implement transport-level functionality, supporting reliability and flow

control, and providing the CONET API [5].

CONET Protocol

Under-CONET

(L2, IP*, UDP/IP)

Transport

Algorithm

CONET API

CONET Information Units (CIUs)

carrier-

Figure 4: Protocol stack below the CONET API

Every CONET node implements the CONET and the Under-CONET protocols.

The CONET protocol is connectionless, handles CONET data-units and provides other

specific functionality, like packetization, caching, security, routing by name and by path

CONET protocol layer is divided into two sub-layers, whose data unit

denoted as "CONET Information Units" (CIU) and "carrier-packets".

CONET layer is any technology able to transfer a carrier-packet between two

points. Therefore, an Under-CONET technology could be either a link

layer or transport-layer technology. In the case of an IP network

technology, we enhance the IP layer so as to integrate part of CONET protocol functionality

in IP (this is the reason why we use the tag IP* in Figure 4). To this end,

a CONET IPv4 Option (see Section 5.7.3). In future deliverables we will

CONET IPv6 Extension Header, so as to extend our solution to IPv6.

Page 52 of 73

name the requests towards

resources towards the best

nodes; iii) provide in-network

aware and able to support in-

use plain IP mechanisms to forward CONET data units.

level functionality, supporting reliability and flow

CONET Information Units (CIUs)

-packets

protocols.

units and provides other

specific functionality, like packetization, caching, security, routing by name and by path-info.

layers, whose data units are respectively

packet between two

CONET technology could be either a link-

case of an IP network-layer

technology, we enhance the IP layer so as to integrate part of CONET protocol functionality

end, we have defined

). In future deliverables we will also specify a

D5.1 Requirements and Initial Protocol Architecture

5.4 Network Identifier (NID)

The network-identifier (NID) uniquely identifies a

the form

NID = <namespace ID, name>

The NID namespace ID determines the structure of the rest of the NID, i.e. of the

field. Thus, the name field is a namespace

NID namespaces (see Table

name field; the other one is based on fixed length hashes of flat

developed within the CONVERGENCE project. The two namespaces are assigned the

following NID name space IDs.

Namespace ID

1

2

5.4.1 VLL (Variable Length Label) NID namespace

In the VLL (Variable Length Label) CONET namespace, the

representation of a named-resource. As described in

that an individual name is composed of a number of components. An authority is needed to

ensure the uniqueness of the NIDs. Th

the uniqueness of DNS names in today's Inter

In the CONET API, a NID of the VLL NID namespace can be inserted

[9], as shown below:

Current WEB names can be easily mapped in

address www.ict-convergence.eu/documents/doc1.txt

the same:

name = www.ict-convergence.eu

Initial Protocol Architecture

Network Identifier (NID)

identifier (NID) uniquely identifies a named-resource at CONET level and has

NID = <namespace ID, name>

determines the structure of the rest of the NID, i.e. of the

field is a namespace-specific string. Up to now, we

Table 1): one, derived from [7], uses variable length strings

is based on fixed length hashes of flat-strings

the CONVERGENCE project. The two namespaces are assigned the

following NID name space IDs.

Table 1: Default CONET namespaces

 Reference

VLL (Variable Length Label) NID

namespace

PLHB (Principal/Label Hash Based)

NID namespace

VLL (Variable Length Label) NID namespace

In the VLL (Variable Length Label) CONET namespace, the name is simply the string

resource. As described in [7], NIDs are hierarchically structured so

that an individual name is composed of a number of components. An authority is needed to

ensure the uniqueness of the NIDs. This approach is similar to the approach used to guarantee

the uniqueness of DNS names in today's Internet.

the CONET API, a NID of the VLL NID namespace can be inserted in the form of an

urn:conet:vll:name

be easily mapped into such a NID format. For instance, the

convergence.eu/documents/doc1.txt could remain exactly

convergence.eu/documents/doc1.txt

Page 53 of 73

resource at CONET level and has

determines the structure of the rest of the NID, i.e. of the name

specific string. Up to now, we have defined two

uses variable length strings for the

strings and has been

the CONVERGENCE project. The two namespaces are assigned the

VLL (Variable Length Label) NID

PLHB (Principal/Label Hash Based)

is simply the string

hierarchically structured so

that an individual name is composed of a number of components. An authority is needed to

the approach used to guarantee

in the form of an URN

such a NID format. For instance, the WEB

could remain exactly

D5.1 Requirements and Initial Protocol Architecture

5.4.2 PLHB (Principal/Label Hash Based) NID namespace

In the Principal/Label Hash Based CONET namespace, the

hash values:

name = <hash (Principal) , hash (Label)>

Principal and Label are strings

bytes. The concept of Principal and Label

name format.

A Principal is the owner of her named

hash is unique in its namespace. The principal identifier has the syntax of a DNS name, e.g.

“www.foo.com”. A central naming authority is needed to ensure the uniqueness of the

Hash(Principal), i.e. a Principal cannot be assigned if its h

assigned hash.

Label is an identifier chosen by the principal to uniquely differentiate her named

Label is a flat string, e.g. “text1/text2/text3.txt”, whose hash is unique among the other label

hashes provided by the same principal.

The Hash(Principal) is an 8 bytes hash of a string representing the

Hash(Label) is a 6 bytes hash of a string representing the

the MD5 function truncated so as to maintain the most significant b

In the CONET API, a NID in the PLHB namespace can be inserted as the URN

urn:conet:plhb:Principal/Label

or simply

Current WEB names could be easily mapped

www.ict-convergence.eu/documents/doc1.txt

Principal = www.ict

Label = documents/doc1.txt

5.5 Packetization process of named

Figure 5 shows the packetization

into different parts, or chunks

information contains the network

the security-data [7]. The optimal chunk size is the result of several tradeoffs; we favour a size

roughly equivalent to the size of chunks in current P2P systems, e.g. 256

However, the CONET architecture could supp

Initial Protocol Architecture

PLHB (Principal/Label Hash Based) NID namespace

In the Principal/Label Hash Based CONET namespace, the name is the compos

name = <hash (Principal) , hash (Label)>

are strings. A hash function transforms them to a fixed number of

bytes. The concept of Principal and Label was originally proposed in [8] bu

rincipal is the owner of her named-resources and uses the Principal

hash is unique in its namespace. The principal identifier has the syntax of a DNS name, e.g.

“www.foo.com”. A central naming authority is needed to ensure the uniqueness of the

, i.e. a Principal cannot be assigned if its hash collides with an already

Label is an identifier chosen by the principal to uniquely differentiate her named

Label is a flat string, e.g. “text1/text2/text3.txt”, whose hash is unique among the other label

he same principal.

is an 8 bytes hash of a string representing the

is a 6 bytes hash of a string representing the Label. The

so as to maintain the most significant bytes.

the PLHB namespace can be inserted as the URN

urn:conet:plhb:Principal/Label

Principal/Label

WEB names could be easily mapped to such a NID. For instance, the

convergence.eu/documents/doc1.txt could remain exactly the same:

Principal = www.ict-convergence.eu

Label = documents/doc1.txt

Packetization process of named-data

shows the packetization process. A named-resource (e.g. a VDI, a file, etc.) is split

chunks. Each chunk is packaged in a named-data CIU

information contains the network-identifier, the chunk sequence number, temporal

. The optimal chunk size is the result of several tradeoffs; we favour a size

roughly equivalent to the size of chunks in current P2P systems, e.g. 256

However, the CONET architecture could support variable chunk sizes.

Page 54 of 73

is the composition of two

name = <hash (Principal) , hash (Label)>

function transforms them to a fixed number of

but with a different

Principal identifier whose

hash is unique in its namespace. The principal identifier has the syntax of a DNS name, e.g.

“www.foo.com”. A central naming authority is needed to ensure the uniqueness of the

ash collides with an already

Label is an identifier chosen by the principal to uniquely differentiate her named-resources.

Label is a flat string, e.g. “text1/text2/text3.txt”, whose hash is unique among the other label

is an 8 bytes hash of a string representing the Principal. The

. The Hash function is

the PLHB namespace can be inserted as the URN [9]:

such a NID. For instance, the WEB address

could remain exactly the same:

resource (e.g. a VDI, a file, etc.) is split

data CIU, whose control

identifier, the chunk sequence number, temporal-data and

. The optimal chunk size is the result of several tradeoffs; we favour a size

roughly equivalent to the size of chunks in current P2P systems, e.g. 256-512 kbytes.

D5.1 Requirements and Initial Protocol Architecture

chunk

A named-data CIU could be too large to be transported by a single under

(e.g. Ethernet frame, or UDP datagram). Therefore, n

are segmented into a sequence of

provided by the Under-CONET data

information, so as to be forwarded without

5.6 Data units

This section provides a preliminary definition of

provide a more thorough description,

delivery of un-named data (i.e. send

(for video streaming), and data

To define our data units, we began with the

in terms of notation and functionality. As

packets” proposed in [7][10]

respectively. However, their protocol information is different. In addition, we

concept of carrier-packets. The new concept simplifies network

provision of CONET functionality

Following the approach adopted in

(CIUs) are defined by XML schemas and encoded with explicitly identified field boundaries.

This design permits field values of arbitrary length. The use of XML st

imply that field values are text strings nor does it require that messages be encoded as human

readable text. Most fields, including those that identify content,

arbitrary binary values.

Initial Protocol Architecture

named-data (e.g., file)

chunk

named-data CIUs

carrier-packets

under-CONET data-unit

Figure 5: packetization process

data CIU could be too large to be transported by a single under

(e.g. Ethernet frame, or UDP datagram). Therefore, named-data CIUs, or parts of these CIUs,

sequence of carrier-packets, whose size fits the payload capacity

CONET data-units. A carrier-packet includes all the necessary routing

information, so as to be forwarded without requiring any kind of (slow) reassembly operation.

iminary definition of CONET data units. Future deliverables will

thorough description, and the specification of other functionality such as

named data (i.e. send-to API primitive), point-to-multipoint data distribution

data-centric security.

began with the proposals in [7][10] and went on

notation and functionality. As concerns notation, the “interest packets” and “data

[10] correspond to our interest CIU and

their protocol information is different. In addition, we

. The new concept simplifies network forwarding

CONET functionality on high speed backbone nodes.

Following the approach adopted in [10], the data formats of the CONET Information Units

(CIUs) are defined by XML schemas and encoded with explicitly identified field boundaries.

This design permits field values of arbitrary length. The use of XML st

imply that field values are text strings nor does it require that messages be encoded as human

including those that identify content, are defined to contain

Page 55 of 73

data CIU could be too large to be transported by a single under-CONET data-unit

parts of these CIUs,

size fits the payload capacity

packet includes all the necessary routing

(slow) reassembly operation.

uture deliverables will

functionality such as

multipoint data distribution

went on modifying them

notation, the “interest packets” and “data

and named-data CIU,

their protocol information is different. In addition, we introduce the

forwarding, facilitating the

, the data formats of the CONET Information Units

(CIUs) are defined by XML schemas and encoded with explicitly identified field boundaries.

This design permits field values of arbitrary length. The use of XML structures does not

imply that field values are text strings nor does it require that messages be encoded as human-

are defined to contain

D5.1 Requirements and Initial Protocol Architecture

The format of carrier-packet complies with a bit

protocols, like IP, TCP, UDP, etc. This

packets, eliminating the processing effor

5.6.1 Named-data CIU

Figure 6 illustrates the structure of the named

described in Table 2 (the formal XML schema will be provided in future deliverables).

named-data CIU can be indentified and processed without using any external information. It

is thus entirely self-contained.

A named-data CIU is a self

protocol to package a chunk of a named

Data fields

A named-data CIU is uniquely identified within the CONET by the couple <NID, Chunk

Sequence Number>. Furthermore, the validity of a named

information contained in the named

Table

Field Type

Network

Identifier

String

Initial Protocol Architecture

t complies with a bit-level description, as in

protocols, like IP, TCP, UDP, etc. This approach facilitates high speed forwarding of carrier

processing effort required to parse XML.

illustrates the structure of the named-data CIU; the related XML elements are

(the formal XML schema will be provided in future deliverables).

data CIU can be indentified and processed without using any external information. It

contained.

data CIU is a self-contained container used by the CONET

protocol to package a chunk of a named-data.

Network Identifier

Chunk Sequence Number

Named-data CIU

Data Chunk

Security Data

(signature, Signed info,…)
segmented in

carrier-packet

payloads

copied in

carrier-packet

header

Temporal Data
(creation time, expiry time,

cache obsolescence)

Figure 6: named-data CIU

data CIU is uniquely identified within the CONET by the couple <NID, Chunk

. Furthermore, the validity of a named-data CIU can be checked by using

rmation contained in the named-data CIU itself, i.e. it is self-authenticating.

Table 2: XML elements of the Named-data CIU

Type Meaning

String The NID of the named-data the

named-data CIU refers to

Page 56 of 73

in classical network

high speed forwarding of carrier-

data CIU; the related XML elements are

(the formal XML schema will be provided in future deliverables). A

data CIU can be indentified and processed without using any external information. It

contained container used by the CONET

data CIU is uniquely identified within the CONET by the couple <NID, Chunk

data CIU can be checked by using

authenticating.

data the

to

D5.1 Requirements and Initial Protocol Architecture

Chunk

Sequence

Number

Integer

Creation

time

Integer

Expiration

time

Integer

Caching

Obsolescence

Period

Integer

Security

Data

To be defined

Data Chunk Binary

5.6.2 Interest CIU

Figure 7 summarizes the structure of the Interest CIU; the related XML elements are

described in Table 3 (the formal XML schema will be provided in future deliverables).

An Interest CIU is a request for a subset of the Data fields of a named

data CIU.

Initial Protocol Architecture

Integer The number of the chunk of the

named-data that is contained

the named-data CIU

Integer Creation time of the named

CIU in Unix time format.

Integer Expiration time (in Unix time

format) of the named-data CIU.

After this time, serving nodes

and border or internal nodes

shall not forward and delete

the named-data CIU.

Integer Number of seconds, since the

named-data CIU was cached.

After the period has elapsed,

cache shall verify the validity

of the cached CIU by contacting

a serving node. A value of 0

means “not-cachable”

To be defined Information that makes it

possible to verify the validity

of the named-data CIU. A named

data CIU is valid when the Data

Chunk is really a chunk of the

named-data identified by the

couple <NID, Chunk Sequence

Number>; i.e. the Data Chunk is

not a fake content.

Binary A sequence of bytes of a named

data.

summarizes the structure of the Interest CIU; the related XML elements are

(the formal XML schema will be provided in future deliverables).

Interest CIU is a request for a subset of the Data fields of a named

Page 57 of 73

The number of the chunk of the

contained in

Creation time of the named-data

CIU in Unix time format.

Expiration time (in Unix time

data CIU.

serving nodes

and border or internal nodes

not forward and delete

Number of seconds, since the

CIU was cached.

After the period has elapsed, a

verify the validity

of the cached CIU by contacting

A value of 0

makes it

to verify the validity

data CIU. A named-

n the Data

Chunk is really a chunk of the

data identified by the

couple <NID, Chunk Sequence

Number>; i.e. the Data Chunk is

A sequence of bytes of a named-

summarizes the structure of the Interest CIU; the related XML elements are

(the formal XML schema will be provided in future deliverables).

Interest CIU is a request for a subset of the Data fields of a named-

D5.1 Requirements and Initial Protocol Architecture

Network Identifier

Chunk

Segment offset

Segment length

Scale

For instance, an end-node could issue an interest CIU to request the block of bytes from byte

1000 to byte 2000 of the chunk n. 3 of a named

convergence.eu/documents/doc1.txt

block of bytes 1000-2000 of the Data fields (i.e. Temporal

Data, see Figure 6) of the named

Number>.

Table

Field

Network

Identifier

Chunk

Sequence

Number (SN)

Segment

offset

Segment

length

Scale

Initial Protocol Architecture

Network Identifier

Chunk Sequence Number

Interest CIU

copied in

carrier-packet

header

Segment info

Segment offset

Segment length

Scale

copied in

carrier-packet

payload header

Figure 7: Interest CIU

node could issue an interest CIU to request the block of bytes from byte

00 to byte 2000 of the chunk n. 3 of a named-data with NID name =

convergence.eu/documents/doc1.txt. In this case, the CONET will send back the

2000 of the Data fields (i.e. Temporal-Data + Security

) of the named-data CIU identified by the couple <NID, Chunk Sequence

Table 3: XML elements of the Interest CIU

Type Meaning

String The NID of the named-resource

addressed by the Interest CIU

Integer The number of the chunk of the

named-resource addressed by

the Interest CIU

Integer Number of the first byte of

the Data fields (see Figure

requested by the Interest CIU

Integer Length of the piece of byte of

Data fields requested by the

Interest CIU

Integer Scaling factors of the Segment

offset and Length fields

Page 58 of 73

node could issue an interest CIU to request the block of bytes from byte

data with NID name = www.ict-

. In this case, the CONET will send back the

Data + Security-Data + Chunk

data CIU identified by the couple <NID, Chunk Sequence

resource

by the Interest CIU

The number of the chunk of the

resource addressed by

Number of the first byte of

Figure 6)

Interest CIU

Length of the piece of byte of

Data fields requested by the

Scaling factors of the Segment

D5.1 Requirements and Initial Protocol Architecture

5.6.3 Carrier-packet

Figure 8 describes the structure of the carrier

4.

Carrier-packets are low

the network forwarding process.

We introduce carrier-packets because a named

by a single Under-CONET data

corresponds to a chunk of about

Under-CONET technologies can be smaller (e.g. 1500 bytes for Ethernet, 64 kbytes for UDP).

Carrier-packets are reassembled in border

cache the related named-data CIU, and in end

reassembly.

Carrier-packets are organized in four parts

described in Table 4.

Field Length (bits)

Header

length

8

Initial Protocol Architecture

describes the structure of the carrier-packet; the related fields are described in

packets are low-level carriers of CIUs and are the data

the network forwarding process.

Header

Header Length

Payload type

NID length

Network-Identifier

Chunk Sequence Number

Cache indication

Reserved

carrier-packet

Payload Header

Path info

Payload

Figure 8: carrier-packet

packets because a named-data CIU could be too large to be transported

CONET data-unit and thus needs to be segmented. A named

about 256/512 kbytes. However, the maximum data unit size of

CONET technologies can be smaller (e.g. 1500 bytes for Ethernet, 64 kbytes for UDP).

packets are reassembled in border-nodes or in internal-nodes which

data CIU, and in end-nodes; validation of the content

are organized in four parts: header, payloadheader, payload

Table 4: fields of the carrier-packet

Length (bits) Meaning

Header

Length of the carrier

header

Page 59 of 73

packet; the related fields are described in Table

level carriers of CIUs and are the data-units of

data CIU could be too large to be transported

unit and thus needs to be segmented. A named-data CIU

the maximum data unit size of

CONET technologies can be smaller (e.g. 1500 bytes for Ethernet, 64 kbytes for UDP).

nodes which are instructed to

the content requires

payload, and path-info

Length of the carrier-packet

D5.1 Requirements and Initial Protocol Architecture

Payload

Type

4

NID Length 2

Network

Identifier

variable

Chunk

Sequence

Number (SN)

variable

Initial Protocol Architecture

Type of the Payload

Value - Meaning

0 - Reserved

1 – bytes of a Interest CIU

2 – bytes of a Named-data CIU

2..15 – Reserved

Code identifying the NID Length:

Value – NID Length

0 - 16 bytes

1 - Reserved

2 - NID starts with a one byte

length field (NID length in

bytes)

3 - Reserved

variable The NID of the named

addressed by the carrier-

variable The chunk Sequence Number (SN) of

the named-resource addressed by

the carrier packet. The SN is

coded with a variable number of

bytes. An initial bit pattern

determines the length of the SN

field, i.e. we adopt a prefix

coding approach.

Initial Bit pattern – SN Length

0 – 1 byte

10 – 2 bytes

110 – 3 bytes

1110 – 4 bytes

11110000 – 5 bytes

11110001 – 6 bytes

Binary patterns from 11110010 to

11111111 are reserved.

be used to extend the SN range if

needed. With this option, we can

have up to 2^40 chunks in a

named-data. Assuming a relatively

small chunk size of 1 kbytes, it

is possible to have a named

of 1099 TeraBytes; by assuming a

Page 60 of 73

of a Interest CIU

data CIU

Code identifying the NID Length:

NID starts with a one byte

length field (NID length in

The NID of the named-resource

-packet

The chunk Sequence Number (SN) of

resource addressed by

the carrier packet. The SN is

coded with a variable number of

t pattern

determines the length of the SN

field, i.e. we adopt a prefix-

SN Length

Binary patterns from 11110010 to

They can

be used to extend the SN range if

needed. With this option, we can

have up to 2^40 chunks in a

data. Assuming a relatively

small chunk size of 1 kbytes, it

is possible to have a named-data

of 1099 TeraBytes; by assuming a

D5.1 Requirements and Initial Protocol Architecture

Cache

indication

1

Reserved 1

Payload

Header

variable

Payload variable

Initial Protocol Architecture

more reasonable chunk size of 256

Kbyte it is possible to have a

named-data of 281474 TeraBytes.

This bit field is used to control

cache operations.

Value - Meaning

0 - No cache

1 - Cache

In the case of an Interest

if the bit is set to "No cache"

it requests to nodes

processing the CIU not to look

for content in the cache, but to

forward the request toward the

source.

In the case of a named-data CIU,

if the bit is set to "No cache"

it requests to nodes

processing the CIU not to cache

the content.

A bit reserved for future use

that aligns the carrier

header to a byte boundary.

Payload Header

variable The information contained in the

Payload Header is specific for

each CIU type. The format of the

Payload header field is reported

below (5.6.3.1)

Payload

variable The information contained in the

payload is specific for each CIU

type. The content of the Payload

field is reported below (

Page 61 of 73

more reasonable chunk size of 256

Kbyte it is possible to have a

data of 281474 TeraBytes.

This bit field is used to control

Interest-CIU,

if the bit is set to "No cache"

that are

not to look

for content in the cache, but to

forward the request toward the

data CIU,

if the bit is set to "No cache"

that are

processing the CIU not to cache

A bit reserved for future use

the carrier-packet

header to a byte boundary.

The information contained in the

Payload Header is specific for

each CIU type. The format of the

Payload header field is reported

The information contained in the

payload is specific for each CIU

type. The content of the Payload

(5.6.3.1

D5.1 Requirements and Initial Protocol Architecture

Path-info variable

5.6.3.1 Payload Header and Payload fields

5.6.3.1.1 Interest CIU

Table 5: Payload

Field Length (bits)

Segment

offset

16

Segment

length

16

Scale 8 (4+4)

Payload 0

5.6.3.1.2 Named-data CIU

Initial Protocol Architecture

Path-info

variable The path-info control information

is tightly associated with

specific communication session

between an end-node and a

serving-node (or an intermediate

cache). The path-info

stores the end node address and

the addresses of the set of

border-nodes in the path

the end-node and the serving

(or a border or internal node

that provides a requested named

data CIU). The format of

path-info field is

below (5.6.3.2)

Payload Header and Payload fields

: Payload Header and Payload fields of the Interest CIU

Payload Header

Length (bits) Meaning

The same as for field of Interest

CIU (see Table 3)

The same as for Interest CIU (see

Table 3)

8 (4+4) The same as for Interest CIU (see

Table 3)

Payload

void

data CIU

Page 62 of 73

control information

tightly associated with a

specific communication session

node and a

intermediate

info field

stores the end node address and

the addresses of the set of

nodes in the path between

the serving-node

(or a border or internal node

that provides a requested named-

). The format of the

specified

field of Interest

Interest CIU (see

Interest CIU (see

D5.1 Requirements and Initial Protocol Architecture

Table 6: Payload

Field Length (bits)

Segment

offset

16

Segment

length

16

Scale 8 (4+4)

More Chunk 1

More

Segments

1

Data field

size

4

Payload variable

Initial Protocol Architecture

: Payload Header and Payload fields of the named-data CIU

Payload Header

Length (bits) Meaning

Number of the first byte of Data

fields (see Figure 6) contained

in the payload

Length of the piece of byte of

Data fields contained in the

payload

8 (4+4) Scaling factors of the Segment

offset and Length fields

Flag indicating more chunks

beyond this one

Value – Meaning

0 – this is the last chunk of the

named-data

1 – this is not the last chunk of

the named data

Flag indicating no more data

beyond this one

Value – Meaning

0 – this carrier packet contains

the last bit of the Data fields

of the named-data CIU

1 – this carrier packet does not

contain the last bit of the Data

fields of the named-data CIU

These bits indicate the length of

the Data fields of the named

CIU.

Value – Length

x – 2^x * 1kB for 0<=x<14

15 – undefined value

Payload

variable Sequence of bytes that are a

piece (segment) of the

Fields of the named-data CIU (

Figure 6)

Page 63 of 73

data CIU

Number of the first byte of Data

) contained

Length of the piece of byte of

fields contained in the

Scaling factors of the Segment

offset and Length fields

Flag indicating more chunks

this is the last chunk of the

this is not the last chunk of

Flag indicating no more data

this carrier packet contains

the last bit of the Data fields

this carrier packet does not

contain the last bit of the Data

data CIU

These bits indicate the length of

the Data fields of the named-data

for 0<=x<14

Sequence of bytes that are a

piece (segment) of the Data

data CIU (see

D5.1 Requirements and Initial Protocol Architecture

5.6.3.2 Path-info field

Table

Field Length

(bits)

len 8 or 16

pointer 8 or 16

Ad-type #1 8

Ad-length #1 optional

Initial Protocol Architecture

field

Table 7: Path-info field of a carrier-packet

Length

(bits)

Meaning

8 or 16 The length field specifies the length

of the path-info field in bytes. If

the first bit of the length field is

0, the remaining 7 bits of the first

byte are used as a length field and

the length field and the pointer field

are both one byte long. In this case

the maximum value of the length of

path-info field is 127 bits

first bit of the length field is 1,

the length field and the pointer field

are both two bytes long. In this case

the maximum value of the length of the

path-info field is 32767.

8 or 16 The pointer field specifies the

offset, starting from the start of the

path-info field. This information

used by CONET nodes for routing

purposes.

Type of the next address field. Each

address is represented as a couple

(ad-type, address), or as a triple

(ad-type, ad-length, address) if the

address type is of variable length.

The ad-type field is of size one

and possible values are:

Value - Meaning

0 - Reserved

1 - Public IPv4 address (length is 4

bytes, no ad-length needed)

2 - Public Ipv6 address (leng

bytes, no ad-length needed))

3 Ethernet address (length is 6 bytes,

no ad-length needed))

4-255 Reserved

optional Length of the next address field

Page 64 of 73

The length field specifies the length

field in bytes. If

the first bit of the length field is

0, the remaining 7 bits of the first

length field and

the length field and the pointer field

one byte long. In this case

the maximum value of the length of the

bits. If the

first bit of the length field is 1,

the length field and the pointer field

two bytes long. In this case,

the maximum value of the length of the

specifies the

offset, starting from the start of the

. This information is

used by CONET nodes for routing

Type of the next address field. Each

address is represented as a couple

type, address), or as a triple

length, address) if the

address type is of variable length.

type field is of size one byte

Public IPv4 address (length is 4

Public Ipv6 address (length is 16

3 Ethernet address (length is 6 bytes,

Length of the next address field

D5.1 Requirements and Initial Protocol Architecture

Address #1 variable

... ...

... ...

Ad-type #n 8

Ad-length #n optional

Address #n variable

5.7 Transport of Data Units through

As specified in Section 5.2, CONET nodes are connected by

These may consist of layer 2 network/link,

functionality, or of an overlay link.

carrier-packets in each of these cases.

The deployment of a content-centric network on top of a link

known approaches used in clean

overlay approaches (e.g. the

integrating content-centric functionality

concept proposed by the CONVERGENCE

to exploit existing IPv4 networks and current and future networks

5.7.1 Layer 2 CSN (clean-

In Layer 2 CSNs, carrier-packet

unit.

5.7.2 Overlay- CSN (overlay approach)

In an overlay-CSNs, the carrier

5.7.3 IP- CSN (integration approach)

In an IP-CSN, a carrier-packet is “integrated” in an IPv4 packet as follows. The header of t

carrier-packet is conveyed by a novel

Figure 9; the other fields of the

number of the IP header is a

“CONET”.

The CONET IPv4 option is parsed by CONET nodes belonging to the IP

enhanced with CONET functionality).

Other “plain” IP routers, on the end

Initial Protocol Architecture

variable Network address (e.g. IP v4 address)

... ...

... ...

...

optional ...

variable ...

Transport of Data Units through CONET Sub Networks (CSN)

, CONET nodes are connected by CONET Sub Networks (CSNs)

layer 2 network/link, of an IP network enriched with content

overlay link. In what follows, we describe how to encapsulate the

these cases.

centric network on top of a link-layer or as an overlay

clean-slate approaches (e.g. the FP7 PURSUIT

the FP7 SAIL and ALICANTE projects). However,

centric functionality “in” IP, so as to make IP content

concept proposed by the CONVERGENCE project. The proposed approac

IPv4 networks and current and future networks based on IPv6

-slate approach)

packets are encapsulated in the payload of the layer

(overlay approach)

, the carrier-packet is encapsulated in the payload of a UDP/IP packet.

CSN (integration approach) – The CONET IPv4 Option

packet is “integrated” in an IPv4 packet as follows. The header of t

packet is conveyed by a novel IPv4 CONET option, detailed in [11]

; the other fields of the carrier-packet are inserted in the IP payload. The

of the IP header is a new number possibly to be allocated by IANA to indicate

The CONET IPv4 option is parsed by CONET nodes belonging to the IP

CONET functionality).

Other “plain” IP routers, on the end-to-end path, simply do not parse the CONET option.

Page 65 of 73

Network address (e.g. IP v4 address)

Sub Networks (CSN)

Sub Networks (CSNs).

an IP network enriched with content-centric

we describe how to encapsulate the

layer or as an overlay-layer are

PURSUIT project) or in

. However, the idea of

make IP content-aware is a novel

approach makes it possible

based on IPv6.

encapsulated in the payload of the layer-2 protocol data

packet is encapsulated in the payload of a UDP/IP packet.

packet is “integrated” in an IPv4 packet as follows. The header of the

[11] and depicted in

packet are inserted in the IP payload. The IP protocol

possibly to be allocated by IANA to indicate

The CONET IPv4 option is parsed by CONET nodes belonging to the IP-CSN (IP routers

end path, simply do not parse the CONET option.

D5.1 Requirements and Initial Protocol Architecture

 Type

 +--------

 |100xxxxx|Length |ppppLLCr| NID |

 +--------

 | NID |

 +--------

 | NID | SN |

 +---

 | (optional SN continuation...) |

 +--------

Figure 9 shows the format of th

fields is as follows.

The Type octet is viewed as having 3 fie

number. The related values are

 Copied flag: 1 (all IP fragments must carry the option)

 Option class: 00 (control)

 Option number: xxxxx (decimal) TO BE

The Length field reports the variable length of

pppp: CONET Information Unit Type

different types of CONET Information Units (CIUs)

 0 Reserved

 1 Interest CONET Inform

 2 Named-data CONET Information Unit (Named

 2-15 Reserved

LL: NID Length Specification

Identifier (NID) field or specifies how the NID

 0 16 bytes length

 1 Reserved

 2 NID starts with a one byte length field (NID length in bytes)

 3 Reserved

C: cache indication. This one bit field is used to control cache operations.

 0 No cache

 1 Cache

(within Information Units that request

cache" it indicates to the crossed nodes not to look for the content in the cache, but to forward

Initial Protocol Architecture

Type

--------+--------+--------+--------+

|100xxxxx|Length |ppppLLCr| NID |

--------+--------+--------+--------+

| NID |

--------+--------+--------+--------+

| NID | SN |

--------+--------+--------+--------+

| (optional SN continuation...) |

--------+--------+--------+--------+

Figure 9: CONET IPv4 Option

shows the format of the CONET IPv4 option (see also [11]). The meaning of the

ype octet is viewed as having 3 fields: 1 bit copied flag, 2 bits option class, 5

The related values are the following:

Copied flag: 1 (all IP fragments must carry the option)

(control)

Option number: xxxxx (decimal) TO BE POSSIBLY ALLOCATED BY IANA

field reports the variable length of the IP option in bytes.

CONET Information Unit Type. This four bits field is used to differentiate between

different types of CONET Information Units (CIUs)

1 Interest CONET Information Unit (Interest CIU)

data CONET Information Unit (Named-data CIU)

Specification. This two bits field provides the length

Identifier (NID) field or specifies how the NID length is provided:

0 16 bytes length

2 NID starts with a one byte length field (NID length in bytes)

This one bit field is used to control cache operations.

ithin Information Units that request a content (e.g. interest CIU), if the bit is set to "No

cache" it indicates to the crossed nodes not to look for the content in the cache, but to forward

Page 66 of 73

The meaning of the

option class, 5 bits option

Copied flag: 1 (all IP fragments must carry the option)

ALLOCATED BY IANA

This four bits field is used to differentiate between

ation Unit (Interest CIU)

data CIU)

length of the Network

2 NID starts with a one byte length field (NID length in bytes)

content (e.g. interest CIU), if the bit is set to "No

cache" it indicates to the crossed nodes not to look for the content in the cache, but to forward

D5.1 Requirements and Initial Protocol Architecture

the request toward the source;

CIU), if the bit is set to "No cache" it indicates to the crossed

r : reserved. The two last bit of the first byte after the option

The other bits of the option are exactly

Table 4.

In future deliverables, we will

Header.

5.8 Network operations

This section sketches some of the

Future deliverables will provide a

operations.

In the examples described below, w

CSNs. We remind, however, that

and overlay scenarios.

5.8.1 Routing-by-name

The routing-by-name mechanism route

name process is performed in the end

address of the CONET node representing the next hop

node.

The basic procedure required for

input and returns the address

Under-CONET layer.

resolveNid (NID)

The resolveNID procedure is based on a name

based routing table contains the tuple:

<network-identifier, mask, next

This is similar to an entry in an

prefixes, i.e. <network-identifier, mask>

There are two possible approaches

Initial Protocol Architecture

the request toward the source; within Information Units that carry content (e.g. named

CIU), if the bit is set to "No cache" it indicates to the crossed nodes not to cache the content)

wo last bit of the first byte after the option length are reserved.

The other bits of the option are exactly the same as in the carrier-packet header described in

n future deliverables, we will use the same approach to define a CONET IPv6 Extension

Network operations

of the network operations involved in retrieving

will provide a detailed specification for these and other

In the examples described below, we consider a CONET network whose

, however, that, the CONET architecture can also support

name mechanism routes a CIU towards a named-resource.

name process is performed in the end-node and in border-nodes that resolve a NID into the

representing the next hop towards the more convenient

required for routing-by-name is resolveNID. This

and returns the address to which the incoming packet has to be forwarded

resolveNid (NID) -> next hop address, output-interface

procedure is based on a name-based routing table. An entry of the name

based routing table contains the tuple:

identifier, mask, next-hop address, output-

This is similar to an entry in an IP routing table, but instead of net-prefixes we have

identifier, mask> couples.

There are two possible approaches for populating a name-based routing table

Page 67 of 73

y content (e.g. named-data

nodes not to cache the content)

reserved.

packet header described in

a CONET IPv6 Extension

in retrieving a named-data.

detailed specification for these and other relevant

whose subnets are all IP-

support the clean-slate

resource. The routing-by-

resolve a NID into the

more convenient serving-

This takes the NID as

ncoming packet has to be forwarded over the

interface

based routing table. An entry of the name-

-interface>

prefixes we have name-

based routing table:

D5.1 Requirements and Initial Protocol Architecture

1- Prefix-dissemination: as suggested by

disseminate name-prefixes, rather than net

2- Lookup-and-cache: this is a novel approach prop

project that makes it possible

scalability of the CONET architecture

data. This approach envisages that a CONET node (end

uses a fixed, limited

meant to be used as a

route-by-name a data-unit, it looks up the related routing entry in a

system and inserts th

appropriate policies specify when

logical point of view, a name

CONET namespace.

The prefix-dissemination and lookup

can also be suitably combined, e.g. using prefix

resources and lookup-and-cache for the remaining ones

specified in future deliverables.

5.8.2 Source-routing

The source-routing mechanism routes a CIU toward a specific network node (rather than

toward a named-resource, as in

The source-routing process is performed in the end

nodes. A serving node exploit

requesting end-node. An end

network node.

Source-routing is supported by the path

packets. Using path-info control information, a CONET node (end, serving or border)

determines the address of the CONET node representing the next hop

node.

5.8.3 Retrieval of a piece of a named

The retrieval of a piece of a named

For instance, an end-node can request the block of bytes from byte 1000 to byte 2000 of the

Data fields of chunk n. 3 of the named

convergence.eu/documents/doc1.txt.

Initial Protocol Architecture

: as suggested by [7], the BGP routing protocol could be used to

prefixes, rather than net-prefixes.

: this is a novel approach proposed by the CONVERGENCE

makes it possible to limit the size of routing tables,

CONET architecture with respect to the number of addressed named

data. This approach envisages that a CONET node (end-node or b

 number of rows in its name-based routing table

meant to be used as a route cache. When a node misses the routing info required to

unit, it looks up the related routing entry in a

inserts the entry in the route cache. When all the

appropriate policies specify when new routing entries can substitute old ones. From a

logical point of view, a name-system serves a single CONET subnet and a

dissemination and lookup-and-cache approaches can work independently

combined, e.g. using prefix-dissemination for the most popular named

cache for the remaining ones. The protocols

specified in future deliverables.

routing mechanism routes a CIU toward a specific network node (rather than

as in the case of the routing-by-name mechanism).

routing process is performed in the end-node, in the serving-node and in border

nodes. A serving node exploits source-routing to send back a named

end-node exploits source-routing to send a CIU to a

routing is supported by the path-info control information contained in the carrier

info control information, a CONET node (end, serving or border)

the address of the CONET node representing the next hop towards the destination

Retrieval of a piece of a named-data CIU

The retrieval of a piece of a named-data CIU involves a request phase and

node can request the block of bytes from byte 1000 to byte 2000 of the

Data fields of chunk n. 3 of the named-data with NID name =

convergence.eu/documents/doc1.txt.

Page 68 of 73

, the BGP routing protocol could be used to

osed by the CONVERGENCE

to limit the size of routing tables, and to ensure the

the number of addressed named-

node or border-node) should

based routing table; this table is

route cache. When a node misses the routing info required to

unit, it looks up the related routing entry in a DNS like name-

the rows are filled in,

substitute old ones. From a

system serves a single CONET subnet and a specific

independently. They

dissemination for the most popular named-

. The protocols involved will be

routing mechanism routes a CIU toward a specific network node (rather than

name mechanism).

node and in border-

routing to send back a named-data CIU to the

routing to send a CIU to a “specific”

info control information contained in the carrier-

info control information, a CONET node (end, serving or border)

towards the destination

and a delivery phase.

node can request the block of bytes from byte 1000 to byte 2000 of the

data with NID name = www.ict-

D5.1 Requirements and Initial Protocol Architecture

In the request phase, a request (Interest CIU)

most convenient serving-node that

In the delivery phase, the requested block of bytes is routed back to the end node from the

serving-node or from any cache available on the end

data CIU. This reverse routing is accomplished by usin

the path-info field contained in the carrier

proposed by the CCNx [7][10]

proposes a stateless content delivery

information on the ongoing communication session

improves the scalability performance

In what follows, we describe the operations performed by the different CONET nodes during

the two phases.

5.8.3.1 Request phase

5.8.3.1.1 Processing in the end

An end-node that wants to retrieve a piece of a named

transported by a carrier-packet,

The end-node stores its IP address in the path

initializes the pointer field.

The interest-carrier-packet is

this end, the end-node has to

packet. The end-node performs a routing

hop (i.e. with the IP address of the next hop). The next hop can be the serving

serving-node is in the same CONET subnet

subnet (if the serving-node is in a differe

5.8.3.1.2 Processing in the serving

The serving-node receives the interest

an IP protocol number corresponding to

"CONET entity” in the serving

Interest CIU and responds by packaging the requested bytes in a novel carrier

hereafter a data-carrier-packet

piggybacked in the data-carrier

node.

5.8.3.1.3 Processing in the border

If the end-node and the serving

carrier-packet traverses one or more intermediate border

Initial Protocol Architecture

request (Interest CIU) from an end-node is routed-by

node that can provide the desired named-data CIU.

In the delivery phase, the requested block of bytes is routed back to the end node from the

node or from any cache available on the end-to-end path related to

reverse routing is accomplished by using a source-routing paradigm, based on

contained in the carrier-packets. Indeed, unlike the stateful approaches

[10] and EU FP7 COMET projects [13], CONVERGENCE

content delivery approach; CONET nodes do not maintain any

e ongoing communication session and we believe that this approach

performance of the CONVERGENCE network.

, we describe the operations performed by the different CONET nodes during

Request phase

Processing in the end-node

node that wants to retrieve a piece of a named-data issues an Interest CIU, which is

packet, hereafter an interest-carrier-packet.

node stores its IP address in the path-info field of the interest

 encapsulated in an IP packet, as described in Sect

has to determine the destination IP address for the interest

node performs a routing-by-name, trying to associate the NID with a next

hop (i.e. with the IP address of the next hop). The next hop can be the serving

node is in the same CONET subnet as the end-node) or a border-node of the CONET

node is in a different CONET subnet).

Processing in the serving-node

node receives the interest-carrier-packet in an IP packet addressed to itself

corresponding to "CONET"; the packet is internally dispatched to the

"CONET entity” in the serving-node. The CONET entity recognizes that the carried CIU is an

Interest CIU and responds by packaging the requested bytes in a novel carrier

packet. The path-info field of the interest

carrier-packet, so as to route back the packet to the requesting end

Processing in the border-node

node and the serving-node are located in different CONET subnets, the interest

one or more intermediate border-nodes.

Page 69 of 73

by-name towards the

data CIU.

In the delivery phase, the requested block of bytes is routed back to the end node from the

 the desired named-

paradigm, based on

the stateful approaches

, CONVERGENCE

CONET nodes do not maintain any

believe that this approach

, we describe the operations performed by the different CONET nodes during

data issues an Interest CIU, which is

field of the interest-carrier-packet and

encapsulated in an IP packet, as described in Section 5.7.3. To

determine the destination IP address for the interest-carrier-

o associate the NID with a next

hop (i.e. with the IP address of the next hop). The next hop can be the serving-node (if the

node of the CONET

addressed to itself, with

internally dispatched to the

node. The CONET entity recognizes that the carried CIU is an

Interest CIU and responds by packaging the requested bytes in a novel carrier-packet,

eld of the interest-carrier-packet is

packet, so as to route back the packet to the requesting end-

node are located in different CONET subnets, the interest-

D5.1 Requirements and Initial Protocol Architecture

A border-node will receive an interest

with an IP protocol number

dispatched to the CONET entity in the border

received packet is an interest CIU.

determines which piece of the named

If the Cache field of the intere

"Cache" but the related named

node, the border-node starts the routing

interest-carrier-packet, which can be a serving

to the border-node, or another border

sending out the interest-carrier

field and updates the pointer field.

If the Cache field of the interest

requested named-data CIU in its cache, the border

packaging the requested bytes in

path-info field of the interest-

route back the data to the requesting end

5.8.3.1.4 Processing in the internal

In the path between end-node and serving

several internal-nodes i.e. IP routers aware of the CONET IP Option. These nodes may have

already cached the named-data CIU requested by the interest

The internal-node works as follows. When processing the IP header for a received IP packet,

it finds that the packet contains the CONET IP Option.

If the Cache field of the Option (i.e. of the interest

Cache", the internal-node forwards the packet using the destination IP address.

If the Cache field is set to "Cache", the internal

data CIU in its cache before forwarding the IP packet.

Sequence Number in the CONET IP option and checks if the named

If the named-data CIU is not present,

If the named-data CIU is in the cache, the internal

protocol information carried in the IP payload and will reply to the interest CIU by packaging

the requested bytes in a novel carrier

field of the interest-carrier-packet is piggybacked in the data

packet back to the requesting end

5.8.3.1.5 Processing in the legacy routers

In the path between end-node and serving

several legacy IP routers. Such router

Initial Protocol Architecture

node will receive an interest-carrier-packet within an IP packet directed to itself,

IP protocol number corresponding to "CONET". The packet

the CONET entity in the border-node. The CONET entity recognizes that the

received packet is an interest CIU. It reads the NID and Chunk Sequence Number and

which piece of the named-data CIU it needs to provide.

If the Cache field of the interest-carrier-packet is set to "No Cache" or if the field is set to

"Cache" but the related named-data CIU is not available in the (optional) cache of the border

node starts the routing-by-name process. It resolves the next hop of the

packet, which can be a serving-node in a different CONET subnet connected

node, or another border-node in the path toward the serving

carrier-packet, the border node adds its IP address in the

field and updates the pointer field.

If the Cache field of the interest-carrier-packet is set to "Cache" and the border

data CIU in its cache, the border-node will reply to the interest CIU by

ytes into a novel carrier-packet, hereafter a data-

carrier-packet is piggybacked in the data-carrier

route back the data to the requesting end-node.

Processing in the internal-node

node and serving-node, the interest-carrier-packet can traverse

IP routers aware of the CONET IP Option. These nodes may have

data CIU requested by the interest-carrier-packet.

node works as follows. When processing the IP header for a received IP packet,

it finds that the packet contains the CONET IP Option.

If the Cache field of the Option (i.e. of the interest-carrier-packet header) is set to "No

forwards the packet using the destination IP address.

If the Cache field is set to "Cache", the internal-node hat to check the presence of the named

data CIU in its cache before forwarding the IP packet. It then reads the NID and Chunk

the CONET IP option and checks if the named-data CIU is in its cache.

data CIU is not present, it performs the normal IP processing.

data CIU is in the cache, the internal-node will process the remaining CONET

protocol information carried in the IP payload and will reply to the interest CIU by packaging

the requested bytes in a novel carrier-packet, hereafter the data-carrier-packet

packet is piggybacked in the data-carrier-packet, so as to route the

to the requesting end-node.

Processing in the legacy routers

node and serving-node, the interest-carrier-packet

. Such routers will simply forward the packet by looking at the IP

Page 70 of 73

packet within an IP packet directed to itself,

he packet is then internally

node. The CONET entity recognizes that the

reads the NID and Chunk Sequence Number and

packet is set to "No Cache" or if the field is set to

data CIU is not available in the (optional) cache of the border-

the next hop of the

node in a different CONET subnet connected

node in the path toward the serving-node. Before

packet, the border node adds its IP address in the path-info

packet is set to "Cache" and the border-node has the

node will reply to the interest CIU by

-carrier-packet. The

carrier-packet so as to

packet can traverse

IP routers aware of the CONET IP Option. These nodes may have

packet.

node works as follows. When processing the IP header for a received IP packet,

packet header) is set to "No

forwards the packet using the destination IP address.

the presence of the named-

reads the NID and Chunk

data CIU is in its cache.

normal IP processing.

node will process the remaining CONET

protocol information carried in the IP payload and will reply to the interest CIU by packaging

packet. The path-info

packet, so as to route the

packet may traverse

will simply forward the packet by looking at the IP

D5.1 Requirements and Initial Protocol Architecture

destination address. Note that a requirement for such legacy routers is that they have to be

configured not to drop IP packets carrying

configuration in most routers (see

5.8.3.2 Delivery phase

5.8.3.2.1 Processing in the responding node

The responding node is the node that is able to provide the named

NID and Chunk Sequence Number) to a requesting end

provides an original copy of the named

copy of the named-data CIU.

The responding node packages

packet), copy the path-info of the interest

packet and integrates it in an outgoing IP packet

The related IP destination address is derived

node reads the last address in the list

destination address. It then update

address in the path-info list as

5.8.3.2.2 Processing in a border

When the end-node and the responding node are located in different CONET subnets, the

data-carrier-packet traverses a set of intermediate border

When a border-node receives a data

directed to itself, whose IP protocol number

internally dispatched to the "CONET entity" in the border

CONET IP option and recognizes that the received packet is a d

The border node reads the path

“CONET previous hop” in the path towards the requesting end

forwards the data-carrier-packet in an outgoing IP packet, whose destination IP address

be set to the CONET previous hop retrieved from the

data-carrier-packet, it will shift the pointer field

If the Cache field of the data-

store the piece of the named

directly reply to an interest-carrier

the entire named-data CIU. Indeed, o

node can verify the validity of the content,

1
We assume that the requested bytes can be carried by a single data

packets will be sent sequentially.

Initial Protocol Architecture

destination address. Note that a requirement for such legacy routers is that they have to be

configured not to drop IP packets carrying unidentified IP options; this is the current

configuration in most routers (see [12]).

Delivery phase

Processing in the responding node

The responding node is the node that is able to provide the named-data CIU (identified by

NID and Chunk Sequence Number) to a requesting end-node. It may be a serving

the named-data CIU, or a border/internal-node that

s the requested bytes in a novel carrier-packet (

of the interest-carrier-packet in the same field of the data

in an outgoing IP packet
1
, as specified in Section 5.7.3

The related IP destination address is derived from the path-info information.

he last address in the list (the "CONET previous hop") and use

updates the pointer field so that the next node use

 the CONET previous hop.

Processing in a border-node

node and the responding node are located in different CONET subnets, the

packet traverses a set of intermediate border-nodes.

node receives a data-carrier-packet, the packet is contained in an IP packet

tself, whose IP protocol number corresponds to "CONET".

internally dispatched to the "CONET entity" in the border-node. The CONET entity reads the

CONET IP option and recognizes that the received packet is a data-carrier-

path-info field and uses the pointer field to

“CONET previous hop” in the path towards the requesting end-node. The border

packet in an outgoing IP packet, whose destination IP address

be set to the CONET previous hop retrieved from the path-info field. Before sending out the

packet, it will shift the pointer field by one position.

-carrier-packet is set to "Cache", the border node may cho

store the piece of the named-data CIU carried by the data-carrier-packet; however, it can

carrier-packet requesting those data only when it

Indeed, only when the CIU has been fully reassembled,

verify the validity of the content, and avoid sending fake content.

We assume that the requested bytes can be carried by a single data-carrier-packet; otherwise more carrier

Page 71 of 73

destination address. Note that a requirement for such legacy routers is that they have to be

unidentified IP options; this is the current

data CIU (identified by

be a serving-node that

node that has a cached

packet (the data-carrier-

packet in the same field of the data-carrier-

5.7.3.

information. The receiving

and uses it as an IP

the pointer field so that the next node uses the previous

node and the responding node are located in different CONET subnets, the

packet is contained in an IP packet

"CONET". The packet is then

node. The CONET entity reads the

-packet.

to identify the next

node. The border-node

packet in an outgoing IP packet, whose destination IP address will

field. Before sending out the

packet is set to "Cache", the border node may choose to

packet; however, it can

only when it has reassembled

ully reassembled, the border

packet; otherwise more carrier-

D5.1 Requirements and Initial Protocol Architecture

5.8.3.2.3 Processing in an internal

Like a border-node, an internal

transported by a data-carrier-pa

The internal-node receives an IP packet with

and uses IP routing to immediately forward

If the Cache indication bit in the IP option is set to "Cache", the internal

choose to store the piece of the named

related interest-carrier-packet

allowing it to verify the validity of the content

5.8.3.2.4 Processing in the legacy routers

When a legacy router receives the data

base of its IP destination address. Note that

packets carrying unidentified IP options; this is the current configuration in most routers (see

[12]).

5.8.4 Complete retrieval of a named

The complete retrieval of a named

convergence.eu/documents/doc1.txt

pieces of named-data CIUs that form the complete named

This sequential retrieval process

rate at which single pieces are retrieved, (i.e. the rate at which the Interest CIUs are send out

by the end-node), and ensures

(see Figure 4).

The specification of the transport algorithm

already offer a general description

like approach proposed in [7].

The transport algorithm issues a sequence of

small part of the whole named

sending rate of these interest CIUs, it is possible to obtain a TCP

mechanism. For instance, we could replace current TCP ACKs with

TCP congestion-window concepts to

Initial Protocol Architecture

Processing in an internal-node

node, an internal-node may decide to cache a piece of the named

packet.

an IP packet with an IP destination different from its own address

immediately forward the packet.

the Cache indication bit in the IP option is set to "Cache", the internal

o store the piece of the named-data CIU. However, it will only be able to reply to a

 only when the entire named-data CIU has been reassembled,

verify the validity of the content and to avoid sending fake conte

Processing in the legacy routers

a legacy router receives the data-carrier-packet, it simply forwards

IP destination address. Note that the router has to be configured not to drop IP

packets carrying unidentified IP options; this is the current configuration in most routers (see

trieval of a named-data – Transport algorithm

The complete retrieval of a named-data, i.e. a file with NID name =

convergence.eu/documents/doc1.txt involves a sequence of retrievals

data CIUs that form the complete named-data (see Figure

process is handled by a transport algorithm, which also

rate at which single pieces are retrieved, (i.e. the rate at which the Interest CIUs are send out

and ensures reliable transfer by requesting retransmission of missing data

The specification of the transport algorithm is left for future deliverables. However, we

already offer a general description of our idea, which is based on the receiver

.

The transport algorithm issues a sequence of Interest CIUs each of which

small part of the whole named-data, e.g. 1500 bytes per interest CIU. By controlling the

sending rate of these interest CIUs, it is possible to obtain a TCP

mechanism. For instance, we could replace current TCP ACKs with interest CIUs and apply

window concepts to outstanding interest CIUs in the network

Page 72 of 73

node may decide to cache a piece of the named-data CIU

different from its own address

the Cache indication bit in the IP option is set to "Cache", the internal-node may also

it will only be able to reply to a

has been reassembled,

content.

s the packet on the

to be configured not to drop IP

packets carrying unidentified IP options; this is the current configuration in most routers (see

data, i.e. a file with NID name = www.ict-

a sequence of retrievals for all the

Figure 5).

which also controls the

rate at which single pieces are retrieved, (i.e. the rate at which the Interest CIUs are send out

retransmission of missing data

future deliverables. However, we can

receiver-driven, TCP-

each of which requests only a

data, e.g. 1500 bytes per interest CIU. By controlling the

sending rate of these interest CIUs, it is possible to obtain a TCP-like flow control

interest CIUs and apply

in the network.

D5.1 Requirements and Initial Protocol Architecture

6 Bibliography

[1] Study of ISO/IEC CD 23006

Technologies: Architecture, X. Wang, C. Timmerer, W. Lee, P. Kudumakis,

2011. http://mpeg.chiariglione.org/working_documents/mpeg

[2] Study text of ISO/IEC CD 23006

Grafl, W. Lee, A. Difino, January 2011.

http://mpeg.chiariglione.org/working_documents/mpeg

[3] Study of ISO/IEC CD 23006

M. Choi, V. Rodriguez, J. Delgado, and F. Chiariglione,

http://mpeg.chiariglione.org/working_documents/mpeg

[4] ISO/IEC 21000-5:2004, Information

- Part 5: Rights Expression Language.

[5] CONVERGENCE Project Deliverable D3.2

Deliverable D3.1).

[6] S. Salsano et al. “SMILE (Simple Middleware Independent LayEr) and its bindings:

SMILE-JS (JSON over SIP),SMILE

http://netgroup.uniroma2.it/SMS/TR/tr

[7] V. Jacobson, et al., ”Networking named content”, in Proc. of ACM CoNEXT 2009

[8] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim

Stoica: “A data-oriented (and beyond) network architecture”, Proc. of ACM

SIGCOMM 2007.

[9] “URN Syntax” IETF 2141, RFC http://www.ietf.org/rfc/rfc2141.txt

[10] CCNx project website,

[11] A. Detti et al., “An IPv4 Option to support Content Networking”, Internet Draft, draft

detti-conet-ip-option-00, Work in progress, March 2011.

[12] A. Detti, N. Blefari-Melazzi, S. Salsano, M. Pomposini: “

Inter-Networking Architecture

Centric Networking, 19 August 2011, Toronto, Ontario, Canada

[13] W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. G. de Blas, F. J. Salguero, L.

Liang, S. Spirou, A. Beben and E. Hadjioannou, "CURLING: Content

Resolution and Delivery Infrastructure for Next Generation Services", IEEE

Communications Magazine, Special Issue on Future Media Internet. To appear in the

March 2011 issue.

Initial Protocol Architecture

Study of ISO/IEC CD 23006-1 2nd Edition Multimedia Service Platform

Technologies: Architecture, X. Wang, C. Timmerer, W. Lee, P. Kudumakis,

http://mpeg.chiariglione.org/working_documents/mpeg-m/pt1.zip

Study text of ISO/IEC CD 23006-2 2nd edition APIs, S. Matone, C. Timmerer, M.

Grafl, W. Lee, A. Difino, January 2011.

http://mpeg.chiariglione.org/working_documents/mpeg-m/pt2.zip.

of ISO/IEC CD 23006-4 2nd edition Elementary Services, M. Grafl, S. Matone,

M. Choi, V. Rodriguez, J. Delgado, and F. Chiariglione,

http://mpeg.chiariglione.org/working_documents/mpeg-m/pt4.zip.

5:2004, Information technology - Multimedia framework (MPEG

Part 5: Rights Expression Language.

CONVERGENCE Project Deliverable D3.2 (see also CONVERGENCE Project

S. Salsano et al. “SMILE (Simple Middleware Independent LayEr) and its bindings:

S (JSON over SIP),SMILE-JSH (JSON over SIP or HTTP)”, available at

http://netgroup.uniroma2.it/SMS/TR/tr-smile.pdf.

V. Jacobson, et al., ”Networking named content”, in Proc. of ACM CoNEXT 2009

T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim

oriented (and beyond) network architecture”, Proc. of ACM

“URN Syntax” IETF 2141, RFC http://www.ietf.org/rfc/rfc2141.txt

CCNx project website, http://www.ccnx.org.

t al., “An IPv4 Option to support Content Networking”, Internet Draft, draft

00, Work in progress, March 2011.

Melazzi, S. Salsano, M. Pomposini: “CONET: A Content Centric

Networking Architecture”, ACM SIGCOMM 2011, Workshop on Information

Centric Networking, 19 August 2011, Toronto, Ontario, Canada.

W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. G. de Blas, F. J. Salguero, L.

Liang, S. Spirou, A. Beben and E. Hadjioannou, "CURLING: Content

Resolution and Delivery Infrastructure for Next Generation Services", IEEE

Communications Magazine, Special Issue on Future Media Internet. To appear in the

Page 73 of 73

1 2nd Edition Multimedia Service Platform

Technologies: Architecture, X. Wang, C. Timmerer, W. Lee, P. Kudumakis, January

m/pt1.zip.

2 2nd edition APIs, S. Matone, C. Timmerer, M.

Grafl, W. Lee, A. Difino, January 2011.

M. Grafl, S. Matone,

M. Choi, V. Rodriguez, J. Delgado, and F. Chiariglione, January 2011.

Multimedia framework (MPEG-21)

(see also CONVERGENCE Project

S. Salsano et al. “SMILE (Simple Middleware Independent LayEr) and its bindings:

JSH (JSON over SIP or HTTP)”, available at

V. Jacobson, et al., ”Networking named content”, in Proc. of ACM CoNEXT 2009.

T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, Kye Hyun Kim, S. Shenker, I.

oriented (and beyond) network architecture”, Proc. of ACM

“URN Syntax” IETF 2141, RFC http://www.ietf.org/rfc/rfc2141.txt

t al., “An IPv4 Option to support Content Networking”, Internet Draft, draft-

CONET: A Content Centric

MM 2011, Workshop on Information-

W. K. Chai, N. Wang, I. Psaras, G. Pavlou, C. Wang, G. G. de Blas, F. J. Salguero, L.

Liang, S. Spirou, A. Beben and E. Hadjioannou, "CURLING: Content-Ubiquitous

Resolution and Delivery Infrastructure for Next Generation Services", IEEE

Communications Magazine, Special Issue on Future Media Internet. To appear in the

