
 
  

 

D3.2 System architecture Page 1 of 175 

 

Project Number: FP7-257123 

Project Title:  CONVERGENCE 

Deliverable Type: Report 

Dissemination Level Public 

 

Deliverable Number: D3.2 

Contractual Date of Delivery to the CEC: 31.05.2011 

Actual Date of Delivery to the CEC: 30.07.2011 

Title of Deliverable: System architecture 

Workpackage contributing to the 
Deliverable: 3 

Nature of the Deliverable: Report 

Editors:  
Mihai Tanase, Lucian Corlan and Stefano 
Salsano 

Authors:  

 
Stefano Salsano, Andrea Detti, Giuseppe 
Tropea, Nicola Blefari Melazzi (CNIT), 
Leonardo Chiariglione (CEDEO), Helder 
Castro (INESC), Angelos – Christos 
Anadiotis, Aziz Mousas, Charalampos 
Patrikakis (ICCS), Thomas Huebner 
(Morpho), Mihai Tanase, Lucian Corlan 
(UTI), Panagiotis Gkonis (SIL), Jose Ribas, 
Daniel Sequeira (WIPRO)  

 

Keyword List:  

Architecture, components, services, 
applications, middleware, network, API, 
requirements, cross-concerns. 



 
  

 

D3.2 System architecture Page 2 of 175 

Executive Summary 

This document supersedes the previous deliverable of WP3 (D3.1) and presents a comprehensive 

description of the CONVERGENCE architecture and the technical components of the framework, with an 

emphasis on the technical innovations that this project is proposing. The document is organized in three 

main sections, which progressively detail the technical achievements of the CONVERGENCE system. 

These sections are: 

• Section 3 presents an overview of the CONVERGENCE system, which provides a revised high-

level architecture of the CONVERGENCE system and introduces the main CONVERGENCE 

concepts. 

• Section 4 presents a detailed description of the main technical and architectural concepts. This 

section is organized as a set of monographs. Each monograph provides a self contained 

description of a feature of CONVERGENCE at the highest level of abstraction at which the reader 

can understand which requirements have been addressed, and the main characteristics of the 

solutions envisaged. 

• Sections 5, 6, and 7 further detail the technical specification of the architectural components. 

The focus is on the technical elements at the Middleware level (section 6), and at the Computing 

Platform level (section 7). Section 5 very briefly describes the Application level and gives only an 

overview of the middleware interactions with tools and application, as the main elements of the 

Application level are described in other deliverables (e.g. D7.1). 

 

Additionally, the APIs for the Technology Engines of the CoMid are reported in ANNEX A, providing the 

maximum level of detail about the specification of the Middleware to the interested reader. 

 

Thanks to this organization, depending on her interest, the reader can stop after reading section 3, can 

read some parts of section 4, can stop after reading all monographs of Section 4, or can proceed further 

in the detailed technical specification sections and even delve into the APIs definition. However, we 

point out that the bulk of technical specification is contained in sections 6 and 7. 

 

An important design requirement and characteristic of CONVERGENCE is modularity, a feature built on 

standard interfaces. CONVERGENCE is not a monolithic system: it is designed so that Applications, 

Middleware, Network and Security protocols and mechanisms can work independently from each other. 

This has obvious advantages: if we find that Content-Centric Networking (CCN) is not a viable solution, 

we can use plain IP networking without having to sacrifice CONVERGENCE Middleware and Applications. 

Likewise, the CONVERGENCE CCN-based networking approach can be deployed as a new networking 

paradigm, independently from the CONVERGENCE Middleware and Applications. Modularity is applied 

also within levels: for instance the middleware could use a different approach to support some 

publish/subscribe operations, to the CDS and the semantic overlay. Modularity is also important for take 

up of CONVERGENCE. The fact that users can adopt "market-ready" parts of CONVERGENCE without 

adopting the whole system facilitates migration from current systems.  



 
  

 

D3.2 System architecture Page 3 of 175 

However, achieving such a level of modularity, hand-in-hand with coordinated operation at all system 

levels, in a distributed environment, has been and is a major technological challenge for the project, 

which can be met only with a knowledgeable and well-thought design of architecture and interfaces. 



 
  

 

D3.2 System architecture Page 4 of 175 

 

Executive Summary ................................................................................................................................. 2 

1 Introduction .................................................................................................................................. 11 

2 Terms and Definitions .................................................................................................................... 13 

3 Overview of CONVERGENCE system ............................................................................................... 20 

3.1 The CONVERGENCE Architecture ............................................................................................ 21 

3.1.1 Applications.................................................................................................................... 24 

3.1.2 Middleware .................................................................................................................... 24 

3.1.3 Computing Platform ....................................................................................................... 26 

3.1.4 A distributed view of the CONVERGENCE system ............................................................ 26 

3.2 CoMid features ...................................................................................................................... 27 

3.2.1 The VDI .......................................................................................................................... 27 

3.2.2 Semantic and Dictionaries .............................................................................................. 28 

3.2.3 Publish/Subscribe ........................................................................................................... 29 

3.3 CoNet features ....................................................................................................................... 30 

3.4 CONVERGENCE Security and CoSec ........................................................................................ 31 

3.4.1 Overview ........................................................................................................................ 31 

3.4.2 CoMid Security ............................................................................................................... 32 

3.4.3 The CoSec ....................................................................................................................... 33 

3.4.4 CoNet security ................................................................................................................ 34 

3.4.5 Cryptographic primitives and protocols in CoSec ............................................................ 34 

4 Main technical and architectural concepts ..................................................................................... 36 

4.1 The MPEG-M standard ........................................................................................................... 36 

4.2 Content Centric Networking ................................................................................................... 38 



 
  

 

D3.2 System architecture Page 5 of 175 

4.3 VDI ......................................................................................................................................... 40 

4.4 VDI dynamics and linking........................................................................................................ 42 

4.4.1 Functional Requirements ................................................................................................ 42 

4.5 CDS ........................................................................................................................................ 43 

4.5.1 CDS supports content description ................................................................................... 43 

4.5.2 CDS dictionaries ............................................................................................................. 45 

4.5.3 Mechanisms for exploiting CDS dictionaries .................................................................... 47 

4.6 Semantic Overlay ................................................................................................................... 49 

4.6.1 Semantic Foundations .................................................................................................... 49 

4.6.2 Semantically managing the Overlay Topology ................................................................. 50 

4.6.3 Propagation Protocol ...................................................................................................... 51 

4.6.4 Peers Registration to Fractals ......................................................................................... 51 

4.6.5 Message Propagation in Semantic Overlay ..................................................................... 53 

4.7 Event reporting ...................................................................................................................... 55 

4.8 Rights Expression Language.................................................................................................... 55 

4.9 Content identification ............................................................................................................ 56 

4.10 Publish / subscribe pattern ..................................................................................................... 58 

4.10.1 Description ..................................................................................................................... 58 

4.10.2 Part 1: inserting/storing a semantic subscription system wide ........................................ 60 

4.10.3 Part 2: matching a subscription ...................................................................................... 61 

4.10.4 Part 3: delivering matches to subscribers. ....................................................................... 61 

4.11 Digital Forgetting ................................................................................................................... 61 

4.11.1 Introduction ................................................................................................................... 61 

4.11.2 Functional Requirements ................................................................................................ 62 



 
  

 

D3.2 System architecture Page 6 of 175 

4.11.3 Digital Forgetting Mechanisms ....................................................................................... 63 

4.12 Real world descriptors............................................................................................................ 66 

4.13 Semantic Search and Content Matching ................................................................................. 66 

4.14 CoMid Security ....................................................................................................................... 73 

4.14.1 Roles .............................................................................................................................. 73 

4.14.2 Assets ............................................................................................................................. 74 

4.14.3 Threats ........................................................................................................................... 76 

4.14.4 Objectives ...................................................................................................................... 77 

4.14.5 Security Functional Requirements .................................................................................. 79 

4.15 CoNet Security ....................................................................................................................... 83 

4.15.1 CoNet Service Integrity ................................................................................................... 84 

4.15.2 CoNet Producer/User Privacy ......................................................................................... 86 

4.16 Scalability ............................................................................................................................... 86 

4.16.1 CoMid scalability ............................................................................................................ 87 

4.16.2 CoNet scalability ............................................................................................................. 88 

5 Overview of Application Level ........................................................................................................ 90 

6 Technical specification of CONVERGENCE Middleware (CoMid) ..................................................... 92 

6.1 CoMid overview ..................................................................................................................... 92 

6.1.1 CoMid functionality ........................................................................................................ 92 

6.1.2 Elementary Services, Protocol Engines and Technology Engines ..................................... 93 

6.2 Orchestration and Aggregation .............................................................................................. 93 

6.3 Protocol engines .................................................................................................................... 95 

6.4 CDS TE ................................................................................................................................... 97 

6.4.1 General description ........................................................................................................ 97 



 
  

 

D3.2 System architecture Page 7 of 175 

6.4.2 Main components and their interaction.......................................................................... 97 

6.5 CoNet TE ................................................................................................................................ 99 

6.5.1 Main components and their interaction.......................................................................... 99 

6.6 Digital Item TE ........................................................................................................................ 99 

6.6.1 Main Components and their Interaction ....................................................................... 100 

6.7 Event Report TE ................................................................................................................... 100 

6.7.1 Event Report Request (ER-R) message .......................................................................... 101 

6.7.2 Event Report (ER) message ........................................................................................... 101 

6.7.3 Main components and their interaction........................................................................ 102 

6.8 Media Framework TE ........................................................................................................... 104 

6.8.1 Main components and their interaction........................................................................ 104 

6.9 Match TE .............................................................................................................................. 104 

6.9.1 General description ...................................................................................................... 104 

6.9.2 Main components and their interaction........................................................................ 105 

6.10 Metadata TE ........................................................................................................................ 106 

6.10.1 Main Components and their Interaction ....................................................................... 106 

6.11 MPEG-21 File TE ................................................................................................................... 107 

6.11.1 Main Components ........................................................................................................ 108 

6.11.2 MPEG-21 File Format .................................................................................................... 108 

6.12 Overlay TE ............................................................................................................................ 108 

6.12.1 Main components and their interaction........................................................................ 108 

6.13 REL TE .................................................................................................................................. 111 

6.13.1 Main components and their interaction........................................................................ 112 

6.14 Security TE ........................................................................................................................... 113 



 
  

 

D3.2 System architecture Page 8 of 175 

6.14.1 Main components and their interaction........................................................................ 113 

7 Technical specification of Computing Platform level .................................................................... 114 

7.1 Network component ............................................................................................................ 114 

7.1.1 CoNet Architecture ....................................................................................................... 116 

7.1.2 Model of operations ..................................................................................................... 119 

7.1.3 CoNet protocol stack .................................................................................................... 120 

7.1.4 Name-based routing: lookup-and-cache ....................................................................... 122 

7.1.5 Integrating CoNet in IP ................................................................................................. 123 

7.1.6 CoNet Application Program Interface ........................................................................... 124 

7.1.7 Examples of use of the CoNet Application Program Interface ....................................... 127 

7.2 Security Component (CoSec) ................................................................................................ 131 

7.2.1 Survey .......................................................................................................................... 131 

7.2.2 Cryptographic Primitives .............................................................................................. 132 

7.2.3 Smart Cards in CONVERGENCE ..................................................................................... 135 

7.2.4 Cryptographic Protocols for specific Security Functional Requirements ........................ 135 

7.2.5 Authentication of users ................................................................................................ 137 

7.2.6 Integrity/Authenticity ................................................................................................... 137 

7.2.7 Licensing ...................................................................................................................... 137 

7.2.8 Example Protocols ........................................................................................................ 137 

8 Bibliography ................................................................................................................................ 139 

9 ANNEX A - APIs for CoMid Technology Engines ............................................................................ 142 

9.1 CDS TE API ........................................................................................................................... 142 

9.2 CoNet TE API ........................................................................................................................ 144 

9.3 Digital Item TE ...................................................................................................................... 145 



 
  

 

D3.2 System architecture Page 9 of 175 

9.4 Event Report TE API ............................................................................................................. 148 

9.5 Media Framework TE API ..................................................................................................... 150 

9.6 Match TE API ........................................................................................................................ 150 

9.7 Metadata TE API .................................................................................................................. 151 

9.8 MPEG-21 File TE API ............................................................................................................. 155 

9.9 Overlay TE API ...................................................................................................................... 157 

9.9.1 MessageCreator ........................................................................................................... 157 

9.9.2 MessageKeeper ............................................................................................................ 157 

9.9.3 MessageParser ............................................................................................................. 157 

9.9.4 PropagationMessageHandler ........................................................................................ 157 

9.9.5 RegistryCreator ............................................................................................................ 158 

9.9.6 RegistryParser .............................................................................................................. 158 

9.10 REL TE API ............................................................................................................................ 159 

9.10.1 Rights expression creation ............................................................................................ 159 

9.10.2 Rights expression parsing ............................................................................................. 160 

9.10.3 Authorization Manager................................................................................................. 162 

9.10.4 Condition Manager ....................................................................................................... 162 

9.11 Security TE API ..................................................................................................................... 162 

9.11.1 CertificateManager Interface ........................................................................................ 163 

9.11.2 KeyManagerInterface ................................................................................................... 164 

9.11.3 SecureDeviceManagerInterface .................................................................................... 167 

9.11.4 SecureRepositoryManagerInterface ............................................................................. 168 

9.11.5 SecurityEngine Class ..................................................................................................... 170 

9.11.6 SecurityEngineKeys Interface ........................................................................................ 170 



 
  

 

D3.2 System architecture Page 10 of 175 

9.11.7 SecurityInfoCreatorInterface ........................................................................................ 172 

9.11.8 SecurityInfoParserInterface .......................................................................................... 172 

10 ANNEX B – Survey of solutions of real world descriptors .......................................................... 174 



 
  

 

D3.2 System architecture Page 11 of 175 

1 Introduction 

This document describes the technical concepts and the functional architecture for the CONVERGENCE 

framework, based on the use cases and functional requirements defined in the Work Package 2 (WP2). 

The purpose of the CONVERGENCE system is to propose a novel content-centric framework that 

complements and enhances the current Internet architecture. The Convergence framework is built upon 

the MPEG-M (MXM) standard and therefore uses and expands on its concepts. 

The presentation of the CONVERGENCE architecture is organized by providing four different views with 

increasing technical detail: 

 

• Overview of CONVERGENCE system (section 3). This section provides the Convergence system 

architecture overview by: 

o Describing the high-level architecture diagrams of the Convergence system 

o Defining the main technical and architectural concepts of the system 

• Description of the main technical and architectural concepts (section 4). This section is organized as 

a set of monographs. Each monograph provides a self contained description of a feature of 

CONVERGENCE at the highest possible level of abstraction that lets the reader understand which 

requirements have been addressed, and the main characteristics of the envisaged solutions. 

• Technical specification of the architectural components: it comprises sections 5, 6, and 7 providing 

the detailed definition of all the modules at the different levels, in particular the Middleware level 

(section 6) and the Computing Platform level (section 7). The Application level (section 5) is only 

sketched, as it is covered in the deliverables of other WPs (e.g. D7.1). In order to ease the reading, 

the specification of the APIs for the different components of the Middleware level is reported 

separately. 

• APIs definition for Technology Engines of the CoMid, reported in an ANNEX. 

 

Thanks to this organization, depending on her interest, the reader can stop after reading section 3, can 

read some parts of section 4, can stop after reading all monographs of Section 4, or can proceed further 

in the detailed technical specification sections and even delve into the APIs definition. However, we 

point out that the bulk of technical specification is contained in sections 6 and 7. 

 

The main results achieved by this deliverable are: 

• A 3-levels architecture (Computing Platform, Middleware, Applications) of an ICT system 

• Specification of the Middleware (CoMid), inspired by the middleware standardized by MPEG 

• Specification of a content-centric network (CoNet) and its integration in the architecture 

• Specification of security technology (CoSec) and its integration in the architecture 

• Specification of APIs between the modular system components 

• Extensions of the VDI format to support semantic linkage and integration in the architecture. The 

proposed format extends the DI format standardized by MPEG. 

• Specification of a Publish/Subscribe mechanism and its integration in the architecture 

• Specification of a Digital Forgetting mechanism and its integration in the architecture 

• Specification of an ontology service and its integration in the architecture. 



 
  

 

D3.2 System architecture Page 12 of 175 

 

An important design requirement and characteristic of CONVERGENCE is modularity, a feature built on 

standard interfaces. CONVERGENCE is not a monolithic system: it is designed so that Applications, 

Middleware, Network and Security protocols and mechanisms can work independently from each other. 

This has obvious advantages: if we find that Content-Centric Networking (CCN) is not a viable solution, 

we can use plain IP networking without having to sacrifice CONVERGENCE Middleware and Applications. 

Likewise, the CONVERGENCE CCN-based networking approach can be deployed as a new networking 

paradigm, independently from the CONVERGENCE Middleware and Applications. Modularity is applied 

also within levels: for instance the middleware could use a different approach to support some 

publish/subscribe operations, to the CDS and the semantic overlay. Modularity is also important for take 

up of CONVERGENCE. The fact that users can adopt "market-ready" parts of CONVERGENCE without 

adopting the whole system facilitates migration from current systems.  

However, achieving such a level of modularity, hand-in-hand with coordinated operation at all system 

levels, in a distributed environment, has been and is a major technological challenge for the project, 

which can be met only with a knowledgeable and well-thought design of architecture and interfaces. 

 



 
  

 

D3.2 System architecture Page 13 of 175 

2 Terms and Definitions 

 

Term Definition 

Access Rights Criteria defining who can access a VDI or its components under what 

conditions. 

Advertise Procedure used by a CoNet user to make a resource accessible to other 

CoNet users.  

Application Software, designed for a specific purpose that exploits the capabilities of the 

CONVERGENCE System.  

Business Scenario A scenario describing a way in which the CONVERGENCE System may be 

used by specific users in a specific context or, more narrowly, a scenario 

describing the products and services bought and sold, the actors concerned 

and, possibly, the associated flows of revenue in such a context. 

Clean-slate architecture The CONVERGENCE implementation of the Network Level, totally replacing 

existing IP functionality. 

See “Integration Architecture” and ”“Overlay Architecture” and “Parallel 

Architecture”. 

CoApp The CONVERGENCE Application Level. 

CoApp Provider  A user providing Applications running on the CONVERGENCE Middleware 

Level (CoMid). 

CoMid The CONVERGENCE Middleware Level. 

CoMid Provider A user providing access to a single or an aggregation of CoMid services. 

CoMid Resource A virtual or physical object or service referenced by a VDI, e.g. media, Real 

World Objects, persons, internet services.  

It has the same meaning of “Resource” and it is used only to better specify 

the term “Resource” when there is a risk of a misunderstanding with the 

term “CoNet Resource”. 

Community Dictionary A CoMid Technology Engine that provides all the matching concepts in a 



 
  

 

D3.2 System architecture Page 14 of 175 

Service (CDS) user’s subscription, search request and publication. 

CoNet Provider A user providing access to CoNet services, i.e. the equivalent of an Internet 

Service Provider. 

CoNet Resource A resource of the CoNet that can be identified by means of a name; 

resources may be either Named-data or a Named service access point. 

Content-based resource 

discovery 

A user request for resources, either through a subscription or a search 

request to the CONVERGENCE system (from literature). 

See “subscription” and “search”. 

Content-based 

Subscription 

A subscription based on a specification of user’s preferences or interests, 

(rather than a specific event or topic). The subscription is based on the 

actual content, which is not classified according to some predefined external 

criterion (e.g., topic name), but according to the properties of the content 

itself. 

See “Subscription” and “Publish-subscribe model”. 

Content-centric A network paradigm in which the network directly provides users with 

content, and is aware of the content it transports, (unlike networks that 

limit themselves to providing communication channels between hosts). 

CONVERGENCE 

Applications level 

(CoApp) 

The level of the CONVERGENCE architecture that establishes the interaction 

with CONVERGENCE users. The Applications Level interacts with the other 

CONVERGENCE levels on behalf of the user.  

CONVERGENCE 

Computing Platform level 

(CoComp) 

The Computing Platform level provides content-centric networking (CoNet), 

secure handling (CoSec) of resources within CONVERGENCE and computing 

resources of peers and nodes. 

CONVERGENCE Core 

Ontology (CCO) 

A semantic representation of the CoReST taxonomy. 

See “CONVERGENCE Resource Semantic Type (CoReST)” 

CONVERGENCE Device A combination of hardware and software or a software instance that allows 

a user to access Convergence functionalities 

CONVERGENCE Engine A collection of technologies assembled to deliver specific functionality and 

made available to Applications and to other Engines via an API 



 
  

 

D3.2 System architecture Page 15 of 175 

CONVERGENCE 

Middleware level 

(CoMid) 

The level of the CONVERGENCE architecture that provides the means to 

handle VDIs and their components.  

CONVERGENCE Network 

(CoNet) 

The Content Centric component of the CONVERGENCE Computing Platform 

level. The CoNet provides access to named-resources on a public or private 

network infrastructure. 

CONVERGENCE node A CONVERGENCE device that implements CoNet functionality and/or CoSec 

functionality. 

CONVERGENCE peer A CONVERGENCE device that implements CoApp, CoMid, and CoComp 

(CoNet and CoSec) functionality. 

CONVERGENCE Resource 

Semantic Type (CoReST) 

A list of concepts or terms that makes it possible to categorize a resource, 

establishing a connection with the resource’s semantic metadata. 

CONVERGENCE Security 

element (CoSec) 

A component of the CONVERGENCE Computing Platform level implementing 

basic security functionality such as storage of private keys, basic 

cryptography, etc. 

CONVERGENCE System A system consisting of a set of interconnected devices - peers and nodes - 

connected to each other built by using the technologies specified or 

adopted by the CONVERGENCE specification. See “Node” and “Peer”. 

Digital forgetting A CONVERGENCE system functionality ensuring that VDIs do not remain 

accessible for indefinite periods of time, when this is not the intention of the 

user. 

Digital Item (DI) A structured digital object with a standard representation, identification and 

metadata. A DI consists of resource, resource and context related metadata, 

and structure. The structure is given by a Digital Item Declaration (DID) that 

links resource and metadata. 

Domain ontology An ontology, dedicated to a specific domain of knowledge or application, 

e.g. the W3C Time Ontology and the GeoNames ontology. 

Elementary Service (ES) The most basic service functionality offered by the CoMid.  

Entity An object, e.g. VDIs, resources, devices, events, group, licenses/contracts, 

services and users, that an Elementary Service can act upon or with which it 

can interact. 



 
  

 

D3.2 System architecture Page 16 of 175 

Expiry date The last date on which a VDI is accessible by a user of the CONVERGENCE 

System.  

Fractal A semantically defined virtual cluster of CONVERGENCE peers. 

Identifier A unique signifier assigned to a VDI or components of a VDI. 

Integration Architecture An implementation of CoNet designed to integrate CoNet functionality in 

the IP protocol by means of a novel IPv4 option or by means of an IPv6 

extension header, making IP content-aware.  

See “Clean-state Architecture”, “Overlay Architecture”, “Parallel 

Architecture” 

License A machine-readable expression of Operations that may be executed by a 

Principal. 

Local named resource A named-resource made available to CONVERGENCE users through a local 

device, permanently connected to the network.  

Users have two options to make named-resources available to other users: 

1) store the resource in a device, with a permanent connection to the 

network; 2) use a hosting service. In the event she chooses the former 

option, the resource is referred to as a local named-resource. 

Metadata Data describing a resource, including but not limited to provenance, 

classification, expiry date etc. 

MPEG eXtensible 

Middleware (MXM) 

A standard Middleware specifying a set of Application Programming 

Interfaces (APIs) so that MXM Applications executing on an MXM Device can 

access the standard multimedia technologies contained in the Middleware 

as MXM Engines. 

MPEG-M An emerging ISO/IEC standard that includes the previous MXM standard. 

Multi-homing In the context of IP networks, the configuration of multiple network 

interfaces or IP addresses on a single computer. 

Named-data A named-resource consisting of data. 

Named resource A CoNet resource that can be identified by means of a name. Named-

resources may be either data (in the following referred to as “named-data”) 



 
  

 

D3.2 System architecture Page 17 of 175 

or service-access-points (“named-service-access-points”).  

Named service access 

point 

A kind of named-resource, consisting of a service access point identified by a 

name. A named-service-access-point is a network endpoint identified by its 

name rather than by the Internet port numbering mechanism. 

Network Identifier (NID) An identifier identifying a named resource in the CONVERGENCE Network. If 

the named resource is a VDI or an indentified VDI component, its NID may 

be derived from the Identifier (see “Identifier”). 

Overlay architecture An implementation of CoNet as an overlay over IP. 

See “Clean-state Architecture” and “Integration Architecture” and “Parallel 

Architecture” 

Parallel architecture An implementation of CoNet as a new networking layer that can be used in 

parallel to IP. 

See “Clean-state Architecture” and “Integration Architecture” and ”“Overlay 

Architecture” 

Policy routing In the context of IP networks, a collection of tools for forwarding and 

routing data packets based on policies defined by network administrators.  

Principal (Rights 

Expression Language) 

The User to whom Permissions are Granted in a License. 

Principal (CoNet) The user who is granted the right to use a CoNet Principal Identifier for 

naming its named resources.  

For example, the principal could be the provider of a service, the publisher 

or the author of a book, the controller of a traffic lights infrastructure, or, in 

general, the publisher of a VDI. 

A Principal may have several Principal Identifiers in the CoNet.  

Principal Identifier 

(CoNet) 

The Principal identifier is a string that is used in the Network Identifiers 

(NID) of a CoNet resource, when the NID has the form: 

NID = <namespace ID, hash (Principal Identifier), hash (Label)> 

In this approach, hash (Principal Identifier) must be unique in the 

namespace ID, and Label is a string chosen by the principal in such a way 



 
  

 

D3.2 System architecture Page 18 of 175 

that hash(Label) is unique for in the context of the Principal Identifier. 

Publish The act of informing an identified subset of users of the CONVERGENCE 

System that a VDI is available. 

Publisher A user of CONVERGENCE who performs the act of publishing. 

Publish-subscribe model CONVERGENCE uses a content-based approach for the publish-subscribe 

model, in which notifications about VDIs are delivered to a subscriber only if 

the metadata / content of those VDIs match constraints defined by the 

subscriber in his Subscription VDI. 

Real World Object A physical object that may be referenced by a VDI. 

Resource A virtual or physical object or service referenced by a VDI, e.g. media, Real 

World Objects, persons, internet services. 

Scope (in the context of 

routing) 

In the context of advertising and routing, the geographical or administrative 

domain on which a network function operates (e.g. a well defined section of 

the network - a campus, a shopping mall, an airport -, or to a subset of 

nodes that receives advertisements from a service provider). 

Search The act through which a user requests a list of VDIs meeting a set of search 

criteria (e.g. specific key value pairs in the metadata, key words, free text 

etc.). 

Service Level Agreement 

(SLA) 

An agreement between a service provider and another user or another 

service provider of CONVERGENCE to provide the latter with a service whose 

quality matches parameters defined in the agreement. 

Subscribe The act whereby a user requests notification every time another user 

publishes or updates a VDI that satisfies the subscription criteria defined by 

the former user (key value pairs in the metadata, free text, key words etc.).  

Subscriber A user of CONVERGENCE who performs the act of subscribing. 

Timestamp A machine-readable representation of a date and time. 

Tool Software providing a specific functionality that can be re-used in several 

applications.  

Trials Organized tests of the CONVERGENCE System in specific business scenarios. 



 
  

 

D3.2 System architecture Page 19 of 175 

Un-named-data A data resource with no NID. 

User Any person or legal entity in a Value-Chain connecting (and including) 

Creator and End-User possibly via other Users. 

User (in OSI sense) In a layered architecture, the term is used to identify an entity exploiting the 

service provided by a layer (e.g. CoNet user). 

User ontology An ontology created by CONVERGENCE users when publishing or subscribing 

to a VDI. 

User Profile A description of the attributes and credentials of a user of the 

CONVERGENCE System. 

Versatile Digital Item 

(VDI) 

A structured, hierarchically organized, digital object containing one or more 

resources and metadata, including a declaration of the parts that make up 

the VDI and the links between them. 

 



 
  

 

D3.2 System architecture Page 20 of 175 

3 Overview of CONVERGENCE system 

The goal of the CONVERGENCE project is to enhance the Internet with a content-centric [3], publish-

subscribe service model [19], based on a common container for any kind of digital data, including 

representations of people and Real World Objects. We call this container the Versatile Digital Item (VDI). 

VDIs are the basic unit of distribution and transaction in the CONVERGENCE network. The definition of 

VDIs is derived from the MPEG-21 Digital Item Declaration Standard [22]. 

VDIs can incorporate every possible kind of information, including signalling and control, and therefore 

minimize the need to store external information and states outside the data unit (though this is still 

allowed). The introduction of the VDIs corresponds to a shift from “host-centric” to “content-centric” 

networking, that is to a form of networking in which the network layer provides users with content, 

instead of providing communication channels between hosts, and is aware of this content, at least in the 

sense it knows its name. This shift is analogous to the switch from circuit to packet switching: in circuit 

switching a PCM slot contains only user data; in packet switching an IP datagram also contains (among 

other things) destination addresses. Similarly, in “content switching”, the VDI contains a complete 

package of user data and meta-data describing content and how to handle it. 

The VDI container can be used to encapsulate any kind of digital information: not only classical media 

files, but also data about services, people and Real World Objects (RWOs) (e.g. items of merchandise 

identified with an RFID). VDIs bind meta-information (describing the content and structure of the item) 

and resources (other VDIs, audio, images, video, text, descriptors of RWOs, descriptors of people etc.). 

The meta-data describing the VDI includes structural information, describing the content of the VDI; 

cryptographic keys allowing robust authentication and protection of information included in the VDI; 

rights information defining rights to use the item; an expiry date, supporting “digital forgetting”. VDIs 

are identified by a unique identifier, which is translated (or which is equal) to a network-level name used 

to route the VDI. 

The second key feature of CONVERGENCE is support for a publish/subscribe service model: subscribers 

register their interest in an event, or a pattern of events, and are asynchronously notified of events 

generated by publishers. Publish/subscribe effectively decouples the application end-points in space, 

time and synchronization. This allows for greater scalability, a more dynamic network topology and a 

much enlarged and flexible typology of services.  

The main players in the CONVERGENCE framework are depicted in Figure 1: publishers advertise 

resources (data and service-access-points) on the CONVERGENCE system and subscribers express their 

interest in specific resources. The system notifies subscribers when the resources become available. 

Users can also search for resources and obtain an immediate response. In this respect search can be 

seen as a sub case of subscribe. 



 
  

 

D3.2 System architecture Page 21 of 175 

VDIs are used both to publish and to subscribe to content. Every resource that is stored or published in 

the CONVERGENCE system is associated with a VDI. Subscriptions express criteria that can be verified by 

inspecting VDI information. Therefore, CONVERGENCE system supports content-based subscriptions as 

defined in [19]. 

Publishers Consumers

Convergence
System

V
D

I

service
V

D
I data

 

Figure 1: Service model 

3.1 The CONVERGENCE Architecture 

CONVERGENCE specifies an Information and Communication Technology (ICT) environment with the 

features described in this document. A CONVERGENCE system is an implementation of the specification 

consisting of a set of interconnected peers and nodes collectively called “CONVERGENCE devices”. 

Peers are based on a 3-level architecture. From the top down: 

1. Application level (CoApp) 

2. Middleware level (CoMid) 

3. Computing Platform level (CoComp) 

 

The Computing Platform level comprises key functional blocks providing novel content-centric 

networking (CoNet) and secure handling (CoSec) of resources within CONVERGENCE. The Computing 

Platform level also provides interfaces to access the local resources of the CONVERGENCE peers. 

 



 
  

 

D3.2 System architecture Page 22 of 175 

Nodes are devices that only include a CoNet networking component and/or a CoSec component, 

belonging as in peers, to the Computing Platform level. Therefore we can have CoNet nodes and CoSec 

nodes (see Figure 2). 

CoNet node peer
CoSec node

Apps

CoMid

Computing Platform

CoNet CoSec

Computing
Platform

CoNet

Computing
Platform

CoSec

 

Figure 2: CONVERGENCE nodes and peers  

Figure 3 depicts the three conceptual levels of the CONVERGENCE system architecture. Each level is 

delimited by the nature of what its components deal with. Figure 3 summarizes the scope of each level 

and the kinds of information exchanged at the interfaces between levels. 



 
  

 

D3.2 System architecture Page 23 of 175 

Convergence Applications

Convergence Middleware

Convergence Computing Platform

CoMid API

CoNet and CoSec API
APIs to local HW/SW resources

Middleware level
VDI management
Resource-discovery and storage
Publication/Subscription handling

Infrastructure level
Access to named-resources
Delivery of named –data
and un-named-data
Security services
Local filesystem and HW

Application level

VDIs
resources

Named-resources
Un-named-data

Credentials
Access rights

 

Figure 3: Overview of CONVERGENCE architectural levels 

Figure 4 depicts the complete architecture of a peer. Each of the 3 levels has its own structure and 

communicates with other levels via standard APIs. 



 
  

 

D3.2 System architecture Page 24 of 175 

Aggregation 

and

Orchestration

App1 App2 Appi
App

m

Tool1 Tool2 Tooli Tooln

Prot 

Eng 1

Prot 

Eng 2

Prot 

Eng i

Prot 

Eng p

Tech 

Eng 1

Tech 

Eng 2

Tech 

Eng i

Tech 

Eng q

Application

Middleware

Computing
Platform

CoMid
API

CoNet
API

CoSec
API

Resource 
API

CoMid
API

CoSecCoNet
Local

Resources
 

Figure 4: Architecture of a CONVERGENCE peer  

3.1.1 Applications 

Applications provide users of CONVERGENCE peers with the means to create, process and consume VDIs 

and their components, and thus to flexibly manipulate digital resources and deal with physical objects 

and their digital counterparts, as well as with people and their digital identities. These resources are 

produced and managed at the Application level. CONVERGENCE-compliant Applications use services 

provided by the CONVERGENCE middleware to create descriptors of resources in the form of VDIs. 

Hence resources and VDIs are exchanged at the interface between Applications and Middleware. 

Users can download/install Applications to a peer. Applications can activate local and remote 

middleware functionalities, via the standard CoMid API. To expedite the development of Applications, 

CONVERGENCE defines special re-usable Application elements called Tools. Tools facilitate re-use of 

code in Applications, an Application can make use of several tools. The CONVERGENCE applications level 

can be seen as split into two sub-levels: a User Applications sub-level and a Tools sub-level. Therefore 

the term Application can be used in a wider sense to refer to both User Applications and Tools. 

3.1.2 Middleware 

The CONVERGENCE Middleware (CoMid) is the level responsible for creating, retrieving, manipulating 

and consuming VDIs. VDIs are published in the CoMid. The CoMid allows users to search for them using 

semantic search operations and delivers the results.  



 
  

 

D3.2 System architecture Page 25 of 175 

The CONVERGENCE Middleware level is based on the MPEG-M standard [21], which provides a 

distributed eco-system of Engines, i.e. components that can be activated by Applications running on 

MPEG-M compliant devices. CONVERGENCE builds on and expands the MPEG-M design. Specifically, 

CONVERGENCE introduces new Engines to: 

• Implement the publish/subscribe paradigm on top of MPEG-M Event Notification services. 

• Allow semantic searching of and subscriptions to published resources. 

The CoMid is thus composed of Engines. Many are “native” MPEG-M engines, some are extended 

MPEG-M engines and a few are new CONVERGENCE-specific Engines.  

There are two types of Engines: 

1. Protocol Engines (PE) that activate functionalities in remote or local peers  

2. Technology Engines (TE) that are typically called by PEs to execute specific functionalities. 

 

Annex 1 provides a list of PEs and TEs included in CONVERGENCE along with the respective definitions. 

An Application call may involve more than one PE/TE. Therefore CONVERGENCE provides a standard 

mechanism for “aggregating” PEs and “orchestrating” TEs. Work is under way to develop a single 

aggregation/orchestration technology applicable to PEs, TEs and, potentially to Applications as well. 

Engines communicate via the CoMid API. 

Figure 5 depicts how an Application call may involve a chain of PEs/TEs. However, chains need not be 

linear: where useful, Applications can directly call TEs without PE intermediation. 

 

Figure 5: A chain of Protocol and Technology Engines  

Figure 6 depicts how Peer 1 talks to Peer 2 via an internal PE, triggering the establishment of a chain of 

PEs/TEs. 



 
  

 

D3.2 System architecture Page 26 of 175 

Aggregation 

and

Orchestration

App1 App2 Appi
App

m

Tool

1

Tool

2
Tooli

Tool

n

Prot 

Eng1

Prot 

Eng2

Prot 

Engi

Prot 

Engp

Tech 

Eng1

Tech 

Eng2

Secu

r ity

TE

Tech 

Engq

Aggregation 

and

Orchestration

App1 App2 Appi
App

m

Tool

1

Tool

2
Tooli

Tool

n

Prot 

Eng1

Prot 

Eng2

Prot 

Engi

Prot 

Engp

Tech 

Eng1

Tech 

Eng2

Secu

r ity

TE

Tech 

Engq

Peer1 Peer2

CoSecCoNet
Local

Resources
CoSecCoNet

Local
Resources

 

Figure 6: Communication between peers via PEs  

CoMid provides the interface between Applications and the two key Computing Platform components: 

CoNet and CoSec, via their counterpart at the middleware level, the CoNet TE and the Security TE, 

respectively.  

3.1.3 Computing Platform 

The CONVERGENCE Computing Platform hosts specialized network and security modules, as well as 

interfaces to local resources, such as file-systems and processing power. 

Engines access the local resources of the computing platform via a Computing Platform dependent API. 

When resources are stored inside the network they became network named-resources (or interactive 

data sessions). The CoNet communication functionalities are accessed, at a low-level, via the CoNet API. 

Applications access these functionalities via the CoNet middleware engine.  

Credentials and access-rights, extracted from Licenses embedded in VDIs, are exchanged with the CoSec 

components of the CONVERGENCE-enabled Computing Platform. Low-level security functionalities in 

the CoSec block are accessed via the CoSec API. Applications access these functionalities via the Security 

middleware engine. 

3.1.4 A distributed view of the CONVERGENCE system 

Figure 7 provides a distributed view of the CONVERGENCE system, seen as a set of interconnected peer 

and CoNet/CoSec nodes. Application functionalities (and related security) are provided in a distributed 



 
  

 

D3.2 System architecture Page 27 of 175 

way by CONVERGENCE peers. Network level functionality and security functionality are realized in a 

distributed way exploiting support of the set of CoNet/CoSec nodes. 

Link
layer-2/ IP overlay

Infrastructure level

Middleware level

peer

peer

peer

peer
peer

node

node

node node

Provider devices End user devices

 

Figure 7: Distributed view of CONVERGENCE system 

3.2 CoMid features 

The following sections briefly introduce key CoMid functionalities, making it possible to: 

• Operate on VDIs, describing resources with metadata extracted from well-known or custom 

semantic taxonomies of concepts; 

• Publish information on resources into an overlay of peers whose topology is based on those 

same semantic taxonomies; this overlay will be referred to as Semantic Overlay 

• Search for resources in specified regions of the Semantic Overlay and deliver matching content 

to users, even when resource descriptions do not fully match user requests. 

3.2.1 The VDI 

CONVERGENCE users act on Versatile Digital Items (VDIs). These are XML structures containing: 



 
  

 

D3.2 System architecture Page 28 of 175 

1. Identifiers 

2. (links to) Resources 

3. (links to) Semantically-rich metadata describing resources 

4. (links to) Licenses expressing which rights are given to act on resources 

5. Event report requests (ERR) instructing a peer to issue an event report (ER) to a specific user/peer in 

the event certain actions (e.g. play, store or match) are performed on a resource 

 

So far, CONVERGENCE has defined 4 types of VDI: Resource (R-VDI), Publication (P-VDI), Subscription 

(S-VDI) and User (U-VDI). 

As part of the creation process, a VDI is assigned a unique and persistent identifier. When a VDI is 

“superseded” by a new version or when a new VDI is related to an existing one, the CONVERGENCE 

Ontology Services let users establish links between them. 

3.2.2 Semantic and Dictionaries 

The CONVERGENCE Core Ontology (CCO) is a native CONVERGENCE component. The CCO allows for a 

semantic organization of peers in a virtual overlay network of “fractals”, which are dynamically shaped 

and connected, on the basis of users’ interests in different types of content. Peers join or leave a fractal 

based on what users are currently publishing and subscribing to. The basic structure of the 

CONVERGENCE Semantic Overlay is shown in Figure 8. A peer typically belongs to more than one fractal, 

depending on how many users are interested in what kind of content. In order to provide redundancy 

and mitigate peer churning (peers may be offline when users wish to access them) fractals are usually 

populated by more than one peer. 

Domain and user ontologies can also be used to define fractals. Typically the former come from Service 

Providers (SP), while the latter are created by the individual users. Therefore, the fractal organization 

can be seen as covering multiple “dimensions”, where each dimension is defined by an ontology. Thus, a 

peer may reference resources described using concepts based on different ontologies in different 

dimensions. 

The Community Dictionary Service (CDS) component is also part of the middleware and is implemented 

as a Technology Engine (CDS TE). This component maintains dictionaries that help translate concepts 

and properties from one ontology model to another. The CDS is exploited when users describe 

resources and when descriptions of what is being published do not match the terms used in user 

definitions of search criteria. In this cases, the CDS attempts to translate betweens concepts and resolve 

the match. 



 
  

 

D3.2 System architecture Page 29 of 175 

 

Figure 8: An example of structure of CONVERGENCE fractals  

3.2.3 Publish/Subscribe 

The key interaction pattern for CONVERGENCE users is based on a publish/subscribe paradigm. Users 

who make resources available to the system and discoverable are said to publish them. Users searching 

for specific resources are said to subscribe to them. The interaction is asynchronous and decoupled in 

time and space. Publications and subscriptions are both described by semantically-rich metadata and 

labelled with relevant concepts. To find relevant content, a dedicated CoMid engine executes a semantic 

query, representing the subscription. The query is successful when published content matches the 

subscription criteria. 

Fractals in CONVERGENCE Semantic Overlay represent focused concepts, i.e. unions and/or intersection 

of concepts in the core ontology or other ontologies (dimensions). All P-VDIs and S-VDIs (which carry 

publications and subscriptions) labelled with a certain concept, are stored in a specific set of peers in the 

fractal. Spatial redundancy (e.g. using more than one peer to store information) is used to ensure 

propagation of information, because at any given time some peers might be inactive. The use of 

“focused” fractals makes it possible to restrict the search space to peers actively participating in the 

fractal. 

Peers have the embedded ability to: 

1. Perform matches between P-VDIs and S-VDIs 

2. Communicate any match to specified peers in the form of ER (Event Reports), depending on licenses 

and ERRs (Event Report Requests) 



 
  

 

D3.2 System architecture Page 30 of 175 

3. Remove S-VDIs and P-VDIs from the match tables when 

a. Their expiration date has passed 

b. An authorized user requests to remove them before the expiration date 

4. Aggregate ERs from different peers and communicate the result to the end user 

3.3 CoNet features 

CoNet features are very briefly recalled in this section; we urge interested readers to read the section 

7.1, which gives a comprehensive vision of this important aspect of the CONVERGENCE system (or at 

least the first 5 sub-sections: 7.1.1 through 7.1.5).  

The retrieval of resources and the communications between peers is made possible by a content-centric 

network, called CoNet that lets users access remote named-resources (as opposed to remote hosts as in 

current Internet).  

As Figure 9 shows, named-resources can be: 

1. Named-data: i.e. a sequence of bits, like a VDI or the resource the VDI refers to 

2. A named-service-access-point (named-sap): i.e. a network endpoint from which a Protocol Engine 

(or any other kind of service entity) receives CoMid messages. 

 

VDI

file,video,…

Protocol

Engine

Named-data Named-data Named-sap

CoMid

CoNet

 

Figure 9: Mapping among CoNet named-resources and middleware entities  

In both cases, the named-resource is identified by a network-identifier, i.e. a name like “foo:VDI1”. In the 

current CONVERGENCE implementation, network identifiers coincide with the identifiers assigned to 

VDIs and their components by a CoMid service. 

Note that the CoMid level and CoNet component in the Computing Platform level are completely 

decoupled: a VDI is a CoMid data-unit. For the CoNet a VDI is simply a sequence of bits addressed by its 

network-identifier. The CoNet has its own data-unit, defined later on (see 7.1). 



 
  

 

D3.2 System architecture Page 31 of 175 

CoNet is aware of the network location of named-resources and uses routing-by-name to route the 

request to the copy of the named-resource held by the network node that is closest to the requesting 

user. The copy could be in a cache or in a serving-node (i.e. a server). Compared to traditional content-

centric architectures (e.g. CCNx), CoNet limits the size of name-based routing tables by including only a 

subset of all named-resources. Missing entries are looked up in a name-system and then cached. 

Moreover, CoNet does not keep states in network nodes to deliver the actual resource from a serving-

node (or a cache) to the requesting peer. We believe that these features will improve network scalability 

with respect to the number of named-resources and the number of ongoing communications.  

CoNet supports built-in caching/replication functions. To improve access to popular resources, the same 

named-resource can be replicated in different network nodes. CoNet provides users with access to the 

most convenient replica. Replica nodes could be pre-provisioned, as in Content Delivery Networks, or 

opportunistically selected by in-network caching mechanisms. In-network caching prevents denial of 

service boys called “flash crowds”, i.e. situations when a very large number of users simultaneous access 

a popular resource. Unlike state-full and off-the-shelf transparent proxy technologies, CoNet performs 

stateless caching. This speeds up caching and reduces the cost of implementation.  

CoNet provides content-based quality of service. Network nodes can differentiate performance in terms 

of bandwidth and storage (caching) on the basis of the name of the resource they are serving. For 

instance, the named-data “foo:VDI-high-priority” might have a higher transmission priority and a higher 

probability of being cached locally than the named-data “foo:VDI-low-priority”. Unlike current IP 

technology, content-based QoS mechanisms do not require complex and slow deep packet inspection 

(DPI). 

CoNet also handles digital forgetting. The owner of named-resources may request CoNet to remove a 

named-resource from all serving-nodes and caches. This can be achieved either by specifying an 

expiration time for the request or by making an explicit request for its removal. 

3.4 CONVERGENCE Security and CoSec 

3.4.1 Overview 

Security is an essential feature of CONVERGENCE. The system’s main security features are: i) assurance 

of VDI integrity (and authenticity); ii) governance of VDI access restrictions (confidentiality); iii) user 

identification and authentication; iv) issuing and enforcement of licenses; v) protection of user privacy; 

and vi) network security. 

Most of these features are provided at the middleware level (CoMid), some at the Computing Platform 

levels. CoMid security features are provided by the Security TE, which in turn relies on features offered 

by CoSec in the Computing Platform. Some security features of the CoNet are provided by CoNet itself; 

others require support from the CoSec. 



 
  

 

D3.2 System architecture Page 32 of 175 

From a methodological standpoint, the CONVERGENCE project defines security assets, considers threats 

to these assets, and derives security functional requirements. These requirements then drive the 

selection and development of appropriate cryptographic primitives and protocols. This methodology, 

which we apply to each of the issues described above, is described in greater detail in sections 4.14 and 

4.15. 

A key task of the methodology is to identify the “roles” that lie at the base of CONVERGENCE security. 

Note that this task is logically prior to the identification of the architectural entities (Technology Engines 

and Protocol Engines) that will implement the required functionality in the CONVERGENCE architecture 

(see section 3.1.2). 

Two key roles are those of the Identity Provider (a trusted third party responsible for the registration of 

users, identification of users, verification of credentials, and issue of certificates) and the Service 

Provider, the entity that handles “daily” business in a specific scenario, including user authentication and 

licenses. One of the benefits of separating the two roles is privacy protection: identity Providers never 

gain access to data accumulated by Service Providers. Service Providers do not need to know all (or any) 

of the personal data Identity Providers collect during registration. A typical Identity Provider might be a 

government agency that performs end-user registration and supplies Service Providers (e.g. insurance 

companies) with users’ certified credentials. 

3.4.2 CoMid Security 

The CoMid exploits the features offered by the CoSec component in the Computing Platform through a 

dedicated Technology Engine called the Security TE. Components wishing to perform a security function 

or protocol will use CoSec via the Security TE. The CoSec serves all requests coming from the other 

engines and directed to the Security TE. 

Based on CoSec, the Security TE can: i) create new credentials and manage certificates; ii) generate keys 

and encrypt/decrypt data or keys; iii) store confidential information (e.g. licenses and keys) in the secure 

repository; iv) certify the integrity of engines. 

Other Engines rely on the Security Engine to perform the following operations (see Figure 10): i) signing 

of VDIs (VDI TE); ii) symmetric encryption/decryption of resources (Media Framework TE); iii) 

asymmetric encryption/decryption of a key (REL TE); iv) user Identification (Identify User TE); v) user 

authentication (Authenticate User TE). 



 
  

 

D3.2 System architecture Page 33 of 175 

Security TE

CoSec

REL TEVDI TE

Media 

Framework 

TE

Event Report 

TE

Identify User 

PE

Authenticate 

User PE

 

Figure 10: Security for CONVERGENCE CoMid 

Secure repositories play a particularly important role in the CoSec security architecture. The preferred 

option for implementing secure repositories in CONVERGENCE will be a smart card. Unlike a piece of 

software, a smart card is highly tamper-resistant. Smart cards also have the ability to process security 

relevant protocols (e.g. issue and validate signatures, validate certificates, generate key pairs, etc.), 

providing functionalities far beyond secure storage. 

3.4.3 The CoSec 

The CoSec component in the Computing platform level is responsible for handling the majority of 

cryptographic protocols and security related tasks. Although the CONVERGENCE architecture diagram 

shows it as a single monolithic block, it actually has a distributed architecture encompassing several 

independent (and possibly distant) components, each of which includes software as well as hardware. 

Most components of CoSec are located on client computers (e.g. end-user laptops), smart cards, 

application servers and network peers. The majority of protocols processed within CoSec involve several 

of these entities. The figure below illustrates the general style of these protocols as exemplified by a 

simplified user authentication protocol. In the example, the smart card acts as a secure repository for 

the user’s signature private key. 



 
  

 

D3.2 System architecture Page 34 of 175 

CoSec features are exposed to the CoMid components (engines) through the CoMid Security TE. A CoSec 

API is defined so that the Security TE can use the CoSec. The CoNet can access CoSec features through 

the CoSec API. 

Key
Certificate

Key
Certificate

Random Challenge

Random
Challenge Signature

Signature
Application

Service

End-user
client

End-user’s
smart card

CoSec

CoSec
module

Security
TE

CoMid

 

Figure 11 CoSec elements and example information exchange 

3.4.4 CoNet security 

CoNet supports security and privacy mechanisms aimed at preserving the integrity of the networking 

service and, where required, the anonymity of owners and consumers of named-resources. A 

distinguishing aspect of CoNet security is the use of data-centric security: security information is 

embedded in CoNet data-units. Data-centric security makes it possible for user and network nodes to 

verify the validity of named-resources, avoiding the caching and dissemination of fake versions. 

Protecting information at the source (i.e. protecting the data unit) is more flexible and robust than 

delegating this function to applications, or securing only the communications channels. CoNet security 

operations may be supported by CoSec. 

3.4.5 Cryptographic primitives and protocols in CoSec 

CONVERGENCE will use various cryptographic protocols to implement security requirements, including 

both off-the-shelf solutions and new primitives which are subjects of ongoing research.  



 
  

 

D3.2 System architecture Page 35 of 175 

Fast symmetric encryption and decryption of content (off the shelf): this will use algorithms like AES-

CBC; key escrow may be standard or based on sophisticated protocols such as ABE (Attribute Based 

Encryption), IBE (Identity Based Encryption) 

Asymmetric cryptography (off the shelf): this will use established primitives like RSA or Elliptic Curves; 

asymmetric cryptography will be used for key agreements, signatures, certificates, key wrapping, etc. 

Basic primitives like cryptographic hashes - (off the shelf) 

Group Signature Protocol – (current research): group signature protocols will allow a member of a pre-

specified group to anonymously sign a VDI’s content or a challenge during authentication. It will only be 

possible to break anonymity on request (e.g. by a government entity as it may be requested by Law) 

Identity and Attribute Based Encryption - (current research): in this scheme recipients of content (or 

messages) are assigned specific (arbitrary) attributes; the provider of content can encrypt according to 

these attributes, so that the possession of the same attributes is needed to decrypt the content. 

Pseudonymous access via “Restricted Identification” - (current research) Within a specific context, 

each user identifies herself with a unique pseudonym; for disjoint context, users’ pseudonyms cannot 

be linked. 

 

Section 7.2.2 will provide more details on the adopted cryptographic primitives and protocols. 



 
  

 

D3.2 System architecture Page 36 of 175 

4 Main technical and architectural concepts 

4.1 The MPEG-M standard 

The emerging MPEG-M standard (ISO/IEC 23006 – Multimedia Service Platform Technologies) is a suite 

of standards providing Architecture, Technology Engines (TE), Protocol Engines (PE), Aggregation 

Technologies and Reference Software that are well aligned to the basic concepts of CONVERGENCE as 

represented in Figure 3 (Overview of CONVERGENCE architectural levels). The standard includes:  

• Part 1 Architecture 

• Part 2 MPEG Extensible Middleware 

• Part 3 Reference Software 

• Part 4 Elementary Services 

• Part 5 Service Aggregation 

 

The figures representing the peer architecture depicted above in this document are based on MPEG-M. 

Part 2 introduced the notion of Engine, i.e. an appropriate groupings of technologies and the Application 

Programming Interfaces (API) through which an Application can access the functionalities it needs. As an 

Application typically needs more than one engine (“chains” of engines), MXM also provides examples of 

Orchestrator Engines, special MXM Engines capable of creating chains of Engines to execute, high-level 

application calls such as “Play” (see Figure 12). 

 

 
Figure 12 – The MXM standard 

Part 4 introduced the notion of Elementary Services and specifies the messages exchanged between two 

peers. An implementation of protocols as specified by Part 4 is called a Protocol Engine. Finally Part 5 

specifies how Protocol Engines can be chained to provide so-called Aggregated Services. 



 
  

 

D3.2 System architecture Page 37 of 175 

In recent years, many new digital media related services have appeared. Many such services are actually 

combinations of Elementary Services. MPEG has seen that, standardizing a set of technology elements 

and communication protocols facilitates the creation of aggregated services, from a set of standard 

Elementary Services, even on demand. 

Assuming that in there is a Service Provider (SP) for each Elementary Service, a User may ask the Post 

Content SP to get a sequence of songs satisfying certain Content and User Descriptions. The Figure 13 

below depicts how a chain of Services can respond to the User’s request. 

 

 

Figure 13– A possible services chain centred around Post Content SP 

 
End User contacts Post Content SP who gets appropriate information from Describe Content SP and 

Describe User SP to prepare the sequence of songs using its internal logic. She then gets the necessary 

licenses from Create License SP. The sequence (“titles”) of songs is handed over to Package Content SP. 

Package Content SP gets the songs (“Resources”) from Store Content SP and hands over the Packaged 

Content to Deliver Content SP which streams the Packaged Content to End User.  

MPEG has specified a set of standard Elementary Services and related protocols to enable distributed 

applications to exchange information about entities playing a role in digital media services (e.g. Content, 

Contract, Device, Event and User), and the processing that a party may wish to execute on those 

entities, (e.g. Authenticate, Create, Deliver, Describe, Identify, Negotiate, Process, Request, Search and 

Transact). These have been standardized in part 4 “Elementary Services” [31].  

 

Given these advantages, CONVERGENCE has decided to adopt MPEG-M as the basis of its middleware 

architecture, including MPEG-M protocol and technology engines, and aggregation technologies. Many 

CONVERGENCE Protocol and Technology Engines come from MPEG-M.  

 

CONVERGENCE extends the Describe Content PE to support integration with ontologies (CDS).  

Specific CONVERGENCE functionalities are supported by other new engines: 

 



 
  

 

D3.2 System architecture Page 38 of 175 

Protocol Engines 

1. Describe Content (extended functionality) 

2. Inject Content (new) 

 

Technology Engines 

1. Community Dictionary Service (CDS) 

2. CoNet 

3. Match 

4. Overlay 

5. Security (extended) 

 

CONVERGENCE is developing and testing its new engines, and plans to propose a selection of them for 

standardization. 

 

4.2 Content Centric Networking 

Several papers (e.g. [11][15][7][16]) and research projects ([8][9]) propose a shift from “host-centric 

networking” to “information centric” or “content-centric” networking. The essence of Content-Centric 

Networking (CCN) is that the network layer provides users with content, instead of communication 

channels between hosts, and is aware of the content, at least in the sense of knowing its “name”. A CCN 

architecture should: 

- Address contents, using an addressing scheme based on names, which do not include references 

to their location; 

- Route a user request, which includes a content-name, toward the closest copy of the content 

with such a name (name-based, anycast routing) and deliver the content to the requesting host; 

- Provide native, in-network caching functionality to achieve efficient content delivery both in 

fixed and mobile environments [17]; 

- Exploit security information embedded in the content to avoid the diffusion of fake versions of 

content and to protect the content (a more robust solution than entrusting security to 

applications, or securing only the communications channels [16]); 

- Provide a way to differentiate the perceived quality provided by different services [18], and 

provide per-content quality of service differentiation, covering cache hits. 

Network level functionalities in CONVERGENCE are provided by the CONVERGENCE Network (CoNet) -a 

content-centric inter-network that provides users with network access to remote named-resources over 

a public or private network infrastructure [1][2][3].  



 
  

 

D3.2 System architecture Page 39 of 175 

In the CONVERGENCE CoNet, named-resources can be either data
1
 (“named-data”) or service-access-

points
2
 (“named-service-access-points”), identified by a network-identifier (a name). 

As shown in Figure 14, CoNet interconnects CoNet Sub Systems, which can be layer-2 networks, layer-3 

networks or couples of nodes connected by a point-to-point link. CoNet supports the “clean-slate” and 

“overlay” approaches to deployment, already proposed in the literature. In addition, CoNet supports a 

novel “integration” approach, which extends the IP layer with a new header option that makes IP 

content-aware[6].  

CoNet limits the size of name-based routing tables by including only a subset of all named-resources; 

missing entries are looked up in a name-system and then cached. CoNet does not maintain states in 

network nodes during delivery of content. 

border-nodes

SN

serving-node

IN

internal-node

R

plain IP router

BN

CSS n.2 

(IPv4 network)

CSS n.3 

(L2 link)

CSS n.1

(overlay link)

SN

R
BN BN

BN

Name 

Sys. 

 

Figure 14: CoNet Architecture 

 

                                                           
1Named-Data includes: documents, video, images, structured information, VDIs. The Network level is general 
purpose, in the sense that it can handle any kind of data and not only data generated by the CONVERGENCE 
system. 

2 A named-service-access-point is a network endpoint through which an upper layer entity (e.g., a server or a client) 
sends and receives data. In the current Internet, for instance, TCP port n. 80 is the default service-access-point for 
HTTP servers. 



 
  

 

D3.2 System architecture Page 40 of 175 

4.3 VDI 

The basic design of CONVERGENCE makes a functional distinction between different kinds of VDIs. 

CONVERGENCE’s basic building block is a Resource – the bits representing a multimedia stream or the 

digital representation of a real-world object, for instance. 

As a first conceptual step we create a Resource VDI around the resource, and let users store it 

somewhere in the network. 

The second conceptual step is to publish the resource to the world. To achieve this, the system uses a 

generic gossiping protocol over an overlay of peers (the CONVERGENCE Semantic Overlay). The 

information to be gossiped is gathered from the Resource VDI, packaged into a transport package and 

gossiped from peer to peer. The transport package is also a VDI. We call it a Publication VDI. 

The reason we use VDIs to advertise the publication of another VDI is because it is convenient: all the 

information that needs to be gossiped (metadata, licence, event reports) fits naturally in a VDI and the 

gossiping protocol does not care about what it is transporting. However, the most important reason is 

that when information about a publication is packaged as a VDI, it can be stored in the physical network 

in the same format, independent of the overlay. By observing the flow of VDIs across the network, 

external entities that know the VDI schema can collect statistics about what is being published and 

subscribed to on the system. 

Publication VDIs offer an additional level of indirection between the Resource and the Resource being 

advertised, an important advantage in complex business scenarios. Publication VDIs allow users to 

publish the same resource, with different metadata, at different times, using different identities. For 

instance, a “second publisher” with appropriate permission from the author, can also publish the 

resource – perhaps because he wants to publish it in a different context. All he needs to do is provide a 

new Publication VDI, pointing to the same Resource VDI. The CONVERGENCE system tries not to restrict 

users’ ability to invent new patterns of business so long as they hold the necessary permissions. 

Publication VDIs carry a licence and an expiry date. 

Subscription VDIs, issued by users searching for specific resources, play a role symmetrical to that of 

Publication VDIs. They carry a licence and an expiry date, too. 

4.3.1.1 Independence of Publication VDIs from Resource VDIs 

The introduction of Publication and Subscription (Pub/Sub) VDIs decouples the functionalities of the 

middleware and the network level. CoMid is all about matching publications and subscriptions, and 

discovery, and basically does not deal with content. To use an analogy with today’s Internet, it is the 

Google database. CoNet, by contrast, is equivalent to ISP servers storing web pages. The two levels are 

independently managed. This decoupling makes the system more robust. 

Since the CoMid and CoNet are decoupled, the only point in common between a Resource VDI and its 

associated Publication VDI is the VDI identifier that links them. This is because they serve two 

completely different purposes. A Resource VDI represents a “thing”; a Publication VDI represents 

information about the “thing”.  



 
  

 

D3.2 System architecture Page 41 of 175 

In principle, a Resource VDI and its associated Publication VDI can have distinct expiry dates. The expiry 

date of the Publication VDI determines how long the resource will be discoverable. When it expires, the 

Resource VDI will no longer show up in searches and subscriptions (it will no longer be visible at the 

CoMid level). However, it will still be possible to fetch it using a direct link held in the CoNet level. In 

many practical situations, the Resource VDI will not have an expiry date. In other cases, the Resource 

VDI may expire before the Publication VDI referring to it. This makes it possible to conserve information 

about a resource, even when the resource itself is no longer available. Resource VDIs can circulate in the 

system without being associated with a Publication VDI. This means they can be indexed by crawlers but 

are not part of the pub/sub process. Expiry of such resources is managed by CoNet expiry mechanisms, 

which are independent of mechanisms in CoMid and work independently of whether they have been 

published. 

 

CONVERGENCE is designed to facilitate automated generation of Publication VDIs from Resource VDIs. If 

publisher and author are the same person (if the principal in the two Licenses is the same) the process 

can be fully automated. In the default scenario, the two VDIs are given the same expiry date, though 

users can configure different expiry dates if they wish. If publisher and author are different persons (the 

system can tell), the Publish Aggregated Service will ask the publisher whether she wish to keep the 

licensing conditions defined in the Resource VDI or define new ones. 

4.3.1.2 Storage of Publication and Subscription VDIs 

Storing Publication and Subscription VDIs on the network has important advantages: by using a content-

centric paradigm and a standard container for publications and subscriptions, the format of the 

database that indexes resources is well-known, and the database itself is highly available (though 

visibility of some VDIs may be restricted by License). 

Possible strategies for assigning Publication and Subscription VDIs to networks nodes include storing 

them in the same peer where they have been created, or on the first peer they are gossiped to, 

(providing the peers deploy the full CONVERGNCE stack, down to the CoNet level) The project has not 

yet made a final choice. However, it is a clear requirement that they should be reachable from CoNet, 

using well-specified names. 

4.3.1.3 User VDIs 

The project is exploring the possible introduction of another kind of VDI, which we call the User VDI. 

This allows for a level of indirection between CoMid services and the real location and/or identity of the 

end-user accessing services. This concept will be further explored and refined in future deliverables. 

4.3.1.4 The Unpublish and Unsubscribe VDIs 

The project is currently studying the definition of UnPublish and UnSubscribe VDIs. Given that peers will 

join and leave the system (as they go on or off line), in an arbitrary fashion, it is not possible to 



 
  

 

D3.2 System architecture Page 42 of 175 

disseminate information about the revocation of a Publication or Subscription VDI to all peers in a 

synchronous and fail proof way. Whatever information spreads across the system at a specific instant, 

there will always be peers that miss it, because they are off-line. 

To deal with this issue, Unpublish and Unsubscribe commands must be distributed asynchronously. The 

injection of UnPublish and UnSubscribe VDIs into the system signals a specific command (unpublish or 

unsubscribe) which is asynchronously gossiped as peers come online and go offline. This way, the 

information is disseminated to all peers as soon as possible. 

4.4 VDI dynamics and linking 

Current systems for versioning of on-line digital content and for creating links between content rely on 

rigid, semantically mute or ambiguous connections between digital objects. More specifically, the only 

standard and universal (HTML based), way of declaring a connection between two digital documents is 

to insert the URL for one of them in the other document. The usual way of doing this is to use <a> or 

<link> tags, indicating that the referenced document is somehow related to the referencing one. The 

specification of the tags provides some support for the expression of the nature/type of these 

relationships (3.4.2.1 [20]). Nonetheless, the number of types that can be expressed is very low and the 

types themselves are semantically ambiguous. Hardly any of the major on-line content retrieval and 

access systems (browsers) use the information. 

CONVERGENCE aims to change this situation by providing users with a universal, explicit, rich and 

semantically unambiguous way of declaring and exploiting relationships between published digital 

objects (VDIs). In this way, CONVERGENCE will provide interesting new features. 

• Clear, universal and unambiguous declarations of versioning relationships between VDIs will 

make it possible to group them into sequences of subsequent VDI versions and provide a 

universal and explicit mechanism for updating digital documents. 

• Universal and unambiguous declarations of a base set of logical relationships between VDIs will 

enable users to declare a VDI to be a comment or correction to another VDI, and allow the 

system to automatically and unambiguously detect and process such relationships. 

• Context dependent declarations of logical relationships between VDIs (or between sections of 

VDIs) will allow users to define “application scope” or “VDI scope” relationships, which can be 

interpreted using a domain-specific ontology. 

4.4.1 Functional Requirements 

CONVERGENCE supports two main mechanisms for expressing the relationship between VDIs. 



 
  

 

D3.2 System architecture Page 43 of 175 

• The first mechanism consists of a declaration that a VDI belongs to sequence of VDIs in which 

each VDI in the sequence is derived from the previous node in the sequence. In this way the first 

node in the sequence is the initial VDI and the last node is the most recent one.  

• In the second mechanism, every VDI contains a declaration, inside the VDI, of its logical 

relationships to other VDIs. For example, if VDI B is a correction to VDI A, VDI B will contain an 

explicit declaration that VDI B maintains a relationship of “correction” to VDI A. 

The implementation of these mechanisms is described in D4.1, sections 5.2, 5.3 and 6.3. 

4.5 CDS 

The Community Dictionary Service (CDS) is the CoMid component responsible for supporting 

CONVERGENCE semantic functionalities. To support this role, the CDS maintains and exploits ontologies 

and the relationships between them. CDS is a distributed service: each peer has access to a local CDS 

which might be customized with user ontologies, and/or can use more complete CDSs to be accessed 

remotely. 

The following sections briefly describe how the CDS supports semantic descriptions of VDIs, and the way 

these descriptions are exploited to provide semantic matching between publications and subscriptions. 

4.5.1 CDS supports content description 

Given Convergence’s content-centric publish/subscribe paradigm (see section 4.10), it is vital to 

correctly match published VDIs to user subscriptions. This requires coherent semantic descriptions of 

VDI resources and of users subscription criteria. Users employ CDS servers, which contain ontology 

models that can accurately describe the resource they wish to publish and to subscribe to. Each user can 

run her own (local or remote) CDS server, loaded with custom/users ontologies as well as well-known 

domain ontologies. The following paragraphs describe how the CDS supports this process. 

4.5.1.1 CDS involvement in publishing 

To help users in building semantic descriptions of their VDIs, the CDS exposes a service for ontology 

entity exploration. The service allows users to select ontology entities to semantically describe their 

VDIs. The walkthrough below describes the creation of the semantic description of a VDI for the movie 

“Star Wars”. The user’s CDS is loaded with the Movie Ontology (www.movieontology.org) and the IMDB 

ontology [40]. The identifier of the VDI is set to RVDI_23. 

Step User action System response Semantic description 

1 User types 

“movie” 

CDS searches for an 

entity named movie and 

returns the imdb:Movie 

 



 
  

 

D3.2 System architecture Page 44 of 175 

and the 

movieOntology:Movie 

Classes 

2 User selects 

movieOntolo

gy:Movie  

System selects the 

movieOntology 

ontology for the 

description of the VDI 

and returns the rdf 

description 

<rdf:rdf> 

<rdf:description rdf:about=”RVDI_23”> 

<rdf:type 

rdf:resource=”&movieOntology;Movie”/> 

</rdf:description> 

</rdf:rdf> 

3 User types 

title 

CDS returns with the 

movieOntology:title 

DatatypeProperty 

 

4 User selects 

movieOntolo

gy:title 

System prompts user to 

enter the title of the 

movie 

 

5 User types 

“Star Wars” 

System returns the user 

the rdf description 

<rdf:rdf> 

<rdf:description rdf:about=”RVDI_23”> 

<rdf:type 

rdf:resource=”&movieOntology;Movie”/> 

<movieOntology:title>Star 

Wars</movieOntology:title> 

</rdf:description> 

</rdf:rdf> 

 

4.5.1.2 CDS involvement in subscribing 

The same service can help users to define subscription criteria. The walkthrough below presents the 

creation of a SPARQL query for the movie “Star Wars”. User’s CDS is again loaded with the Movie 

Ontology and the IMDB ontology. 

Step User action System response Semantic query 

1 User types 

movie 

CDS searches for an 

entity named movie and 

returns the imdb:Movie 

and the 

movieOntology:Movie 

Classes 

 

2 User selects 

imdb:Movie  

System selects the imdb 

ontology for the 

description of the VDI 

and returns the sparql 

query 

SELECT ?x 

WHERE 

{ 

?x rdf:type imdb:Movie 

} 



 
  

 

D3.2 System architecture Page 45 of 175 

3 User types 

title 

CDS returns with the 

imdb:title 

DatatypeProperty 

 

4 User selects 

imdb:title 

System prompts user to 

enter the title of the 

movie 

 

5 User types 

“Star Wars” 

System returns the user 

the SPARQL query 

SELECT ?x 

WHERE 

{ 

?x rdf:type imdb:Movie 

?x imdb:title “Star Wars” 

} 

 

4.5.1.3 Matching  

Matching is one of the core issues that the CONVERGENCE system has to face. The plethora of ontology 

models and the freedom granted to users to select the ontology with which they describe their VDIs (or 

to use their own ontologies) inevitably creates a huge diversity in the metadata used to described VDIs, 

and the risk that user publications and subscriptions will not match unless they are both described using 

the same ontology. 

4.5.2 CDS dictionaries 

4.5.2.1 Introduction 

CDS dictionaries are a new concept designed to address the issues of heterogeneous metadata. In 

essence, a CDS dictionary is an ontology, just like user ontologies and domain ontologies. Unlike other 

ontologies, however, its whole content consists of a mapping between two different ontologies: that is, 

a set of equivalence statements between entities in the first ontology and entities in the second. In this 

way, CDS dictionaries provide semantic bridges between user-ontologies, between user-ontologies and 

domain ontologies or between domain ontologies.  

The figure below depicts the set of ontologies the CDS uses during publication, subscription and 

matching procedures. 

 



 
  

 

D3.2 System architecture Page 46 of 175 

 

Figure 15 - CDS Ontologies 

4.5.2.2 CDS dictionary format 

As an example of the CDS dictionary format, the table below provides a mapping between the 

movieOntology and the imdb ontologies. 

 

movieOntology 

ontology 

<owl:Class rdf:about="&movieOntology;Movie"/> 
 
<owl:DatatypeProperty rdf:about="&movieontology;tit le"> 
<rdfs:domain rdf:resource="&movieOntology;Movie"/> 
<rdfs:range rdf:resource="&xsd;string"/> 
</owl:DatatypeProperty> 
… 

movieOntology-

imdb dictionary 

<owl:Class rdf:about="&movieOntology;Movie"> 
<owl:equivalentClass rdf:resource=”&imdb;Movie”/> 
</owl:Class> 
 
<owl:DatatypeProperty rdf:about="&movieontology;tit le"> 
<owl:equivalentProperty rdf:resource=”&imdb;title”/ > 
</owl:DatatypeProperty> 
… 

Imdb ontology <owl:Class rdf:about="&imdb;Movie"/> 
 
<owl:DatatypeProperty rdf:about="&imdb;title"> 
<rdfs:domain rdf:resource="&imdb;Movie"/> 
<rdfs:range rdf:resource="&xsd;string"/> 
</owl:DatatypeProperty> 
… 

 



 
  

 

D3.2 System architecture Page 47 of 175 

Dictionaries can also use the skos:narrower and skos:broader properties to connect ontology entities, in 

case they are not semantically equivalent. 

4.5.3 Mechanisms for exploiting CDS dictionaries 

4.5.3.1 Publishing 

Consider the “Star Wars” Resource VDI, described in the previous example. The metadata in the VDI is 

based on the movieOntology. The walkthrough below shows how the user can use the CDS to create 

semantically equivalent metadata based on the imdb ontology.  

Step User action System response Semantic description 

1 User passes 

the 

movieOntolo

gy-based 

semantic 

description 

to the CDS 

 <rdf:rdf> 

<rdf:description rdf:about=”VDI1”> 

<rdf:type 

rdf:resource=”&movieOntology;Movie”/> 

<movieOntology:title>Star 

Wars</movieOntology:title> 

</rdf:description> 

</rdf:rdf> 

2  CDS returns the user the 

imdb-based equivalent 

rdf description 

<rdf:rdf> 

<rdf:description rdf:about=”VDI1”> 

<rdf:type rdf:resource=”&imdb;Movie”/> 

<imdb:title>Star Wars</imdb:title> 

</rdf:description> 

</rdf:rdf> 

4.5.3.2 Subscribing 

The CDS can also be used to translate a SPARQL query from one ontology to another, as shown in the 

walkthrough below.  



 
  

 

D3.2 System architecture Page 48 of 175 

 

Step User action System response Semantic query 

1 User passes 

the imdb-

based 

SPARQL 

query to the 

CDS 

 SELECT ?x 

WHERE 

{ 

?x rdf:type imdb:Movie 

?x imdb:title “Star Wars” 

} 

  CDS returns the user the 

movieOntology-based 

equivalent SPARQL 

query 

SELECT ?x 

WHERE 

{ 

?x rdf:type movieOntology:Movie 

?x movieOntology:title “Star Wars” 

} 

4.5.3.3 Matching 

On receiving the publication, the CDS is requested to expand the semantic description of the VDI of the 

movie using the movieOntology-imdb dictionary. As seen in the walkthrough below, this procedure 

creates new triples.  

Step User action System response Semantic description 

1 User passes 

the 

movieOntolo

gy-based 

semantic 

description 

to the CDS 

for 

materializati

on 

 <rdf:rdf> 

<rdf:description rdf:about=”VDI1”> 

</rdf:description> 

</rdf:rdf> 

2  CDS returns the user the 

materialized rdf 

description of the VDI 

<rdf:rdf> 

<rdf:description rdf:about=”VDI1”> 

<rdf:type rdf:resource=”&imdb;Movie”/> 

<imdb:title>Star Wars</imdb:title> 

<rdf:type 

rdf:resource=”&movieOntology;Movie”/> 

<movieOntology:title>Star 

Wars</movieOntology:title> 

 

</rdf:description> 

</rdf:rdf> 



 
  

 

D3.2 System architecture Page 49 of 175 

 

After expansion, movieOntology-based and the imdb-based SPARQL queries will both find the match. 

This mechanism is explained in detail in the section 4.13. 

4.6 Semantic Overlay 

4.6.1 Semantic Foundations 

CONVERGENCE is built upon a content-centric network, which is accessed through the CoNet engine and 

its APIs. Hence, applications are not aware of the locations where resources are stored. To access a 

resource they use the name under which it is advertised in CoNet (see description of CoNet TE in section 

CoNet TE). However, a name cannot convey the whole meaning of the resource, which is needed for 

discovering the resource using some (semantic) description. 

The indexing and efficient retrieval of content by semantic metadata is the key feature of the 

CONVERGENCE Semantic Overlay. 

Efficient semantic operations on metadata require a scheme for semantic categorization of resources 

[38]. The first element in the CONVERGENCE scheme is the so-called CONVERGENCE Core Ontology 

(CCO); a CONVERGENCE-wide hierarchical taxonomy of resource semantic types, implemented as an 

OWL ontology. The first level root concept in the ontology is the “Resource”; first level children are 

“Digital Resources”, “People”, “Real World Objects” and “Services”, corresponding respectively to the 

Internet of Media, the Internet of People, the Internet of Things and the Internet of Services. Figure 16 

provides an abstract view of the CCO. 



 
  

 

D3.2 System architecture Page 50 of 175 

Digital Resource RWO ServicePeople

Photo Document Video

ResearchPaper …

…Sensor… … LBS

RFID … RestaurantFinder …

……… … … …

Resource

 

Figure 16 - CONVERGENCE Core Ontology (CCO) 

The CCO is not the only ontology available to CONVERGENCE users. Additional ontologies make it 

possible to categorize content in other ways, which may either make it more specific (e.g. it could be an 

ontology of music genres or movie types) or they could refer to entirely different context (e.g. classifying 

the peers based on their location). 

4.6.2 Semantically managing the Overlay Topology 

Peers belonging to the overlay are partitioned into groups based on semantic criteria. For example, all 

peers injecting VDIs which belong to the category cco:movie, belong to the group cco:movie. Groups like 

this have the same kind of self-similarity we find in fractals, geometric shapes “that can be split into 

parts, each of which is (at least approximately) a reduced-size copy of the whole” [33]. We therefore call 

them network fractals.  

A peer may belong to some fractals in the CCO and other fractals in another ontology – representing 

another dimension of semantic meaning (e.g. an ontology of access rights). This organization is virtual 

and not a physical one. Each peer propagates a message in one or more fractals, in one or more 

dimensions. Every time a peer decides to propagate a message to the overlay, it determines the final 

group of peers that should receive the message. These peers may belong to one or more fractals in one 

or more dimensions.  



 
  

 

D3.2 System architecture Page 51 of 175 

Consider a fractal i belonging to the j-th dimension and consisting of a group of peers, Gi
j
. The message is 

then propagated to the peers of the group G that satisfy the condition: 

 

This implies that: 

• When a user wants to inject content into a set of fractals belonging to a single dimension, she 

sends this content to the peers of the union of these fractals. 

• When a user wants to inject content into a set of fractals belonging to multiple dimensions, she 

takes the union of fractals for each dimension and injects the content into the intersection of 

these sets. 

4.6.3 Propagation Protocol 

A major challenge facing CONVERGENCE Semantic Overlay is the very dynamic nature of the 

CONVERGENCE system. Peers will continuously join and leave fractals for many different reasons: 

• A peer is no longer interested in a topic (i.e. no publications or subscriptions for that topic are 

present in the peer) and leaves the fractal. 

• A new peer is interested in a topic (makes a publication and/or subscription for that topic) and 

enters the fractal. 

• A peer goes offline/online. 

• A peer crashes. 

CONVERGENCE will therefore employ a gossiping protocol, to propagate content in the fractal and to 

enable peers to maintain a partial view of their fractals, since gossiping protocols have been proven to 

be robust and scalable and, hence, a good solution for dynamic networks [34][35][37][36]. 

4.6.4 Peers Registration to Fractals 

Each fractal maintains a registry, which is maintained and used by constituting peers belonging to the 

fractal to communicate with each other. The registry contains the following important information. 

• The URI of the ontology used to partition the system into fractals. This information is used to 

access fractals that are higher or lower in the hierarchy than the current fractal. 

• The fractal identifier. This shows which fractal the registry refers to. 



 
  

 

D3.2 System architecture Page 52 of 175 

• The size of the fractal (the number of peers in the fractal). This number is used to determine the 

size of this registry. 

• Other characteristics of peers belonging to the fractal 

o The peer identifier. 

o The peer overlay propagation service endpoint. Publication and subscription VDIs are 

pushed to this peer via this service endpoint. 

o The date on which the peer is scheduled to leave the fractal (the latest expiration date 

for any publication or subscription a peer has injected into the fractal). 

Peers remain in the registry until the leave date has passed. When a peer receives a VDI from a remote 

peer, it checks the VDI’s expiry date and updates the leave date of the remote peer in the local registry 

accordingly. After a peer has selected the peers to which it will propagate content (partial view), it 

checks their leave dates. In case there are peers in the partial view whose leave dates have passed, the 

peer removes them from the partial view and the registry. Finally, it replaces the removed peers in the 

partial view with others from the registry. 

Each peer periodically advertises a part of the registry under a given, standard, name, which is decided a 

priori. The selection of the name is system-dependent; for example, in CONVERGENCE, the registry for a 

fractal of type cco:movie, has the name urn:overlay:registry:cco:movie . This way, any peer 

that enters the system will always find another peer that can provide it with an entry point to the 

system. Since gossiping protocols do not require from a peer to communicate with all the other peers of 

the fractal, rather than with O(logN) of them, where N is the size of the fractal, the size of the advertised 

registry is of order O(logN). 

Next, we are describing how the topology management protocol of the overlay handles the creation of a 

fractal and the update of the registry: 

• Bootstrapping. When a peer enters a fractal (by issuing a publication or a subscription) it first 

has to register. To do this, it first requests the fractal registry by its name (as we said above, 

each peer periodically advertises a part of its registry). If there is no registry, this means that it is 

the first peer in the fractal. It therefore creates a registry, adds itself to the registry and 

advertises the registry to the network. If there is a registry it gossips a discovery message to the 

peers in the registry, which continue the gossiping of the discovery message. Each peer receiving 

a discovery message immediately adds the initiator (the first peer in the path contained in the 

header) to its registry, increases the fractal size by one peer and responds with its profile 

(identifier, overlay propagation service endpoint and leave date). When the new peer receives 

the profile, it adds it to the registry. 



 
  

 

D3.2 System architecture Page 53 of 175 

• Registry Update (same ontology). The bootstrapping procedure has the drawback that 

registries only contain entries for peers that are online at a given time. This is why every time a 

peer receives a gossiping message, it looks into the header, extracts the path and updates the 

registry with any peers that are not already in the registry. Every time a peer comes back online, 

peers that have been online in the meantime will have a better view of the system. The peer 

therefore checks the advertised registry of the fractal and adjusts the fractal size in its copy of 

the registry. Given the characteristics of the gossiping protocol, peers do not need to know the 

exact size of the fractal. The number of target peers and gossiping rounds (TTL) grows with 

logarithm of fractal size and do not change significantly with small changes in fractal size. 

• Registry Update (new ontology). In some cases, ontologies affecting the overlay may change. 

Such changes will affect the organization of the fractals and may lead to the addition of new 

fractals or the merging of existing ones. In the former case, the system needs to create a new 

registry for each new fractal. In the latter case, some fractals in the current view merge with the 

fractals in the updated view. In both cases, the system needs to process the core ontology and 

create semantic connections (equivalence links) between the old concepts and the new ones 

(see next section).If a peer realizes that the topology has changed (reflecting a change in the 

core ontology), it automatically converts the old resource semantic types to the new ones, using 

the connections defined in the new ontology. From that moment on, it gossips to the new 

fractal. 

4.6.5 Message Propagation in Semantic Overlay 

When a peer receives a message, it first checks its resource semantic type and validates it with the 

corresponding ontology (see Registry Update above). The peer then calculates the group G (see section 

4.6.2) - its partial view of the system. To do this, it analyzes the relationships between the different 

fractals belonging to same dimension.  

Consider the following example. 

The VDI represents a publication about Action and Romantic Movies (suppose we have one fractal for 

each one of these genres) and also addresses peers that understand concepts about Hunting and Kisses 

(two fractals belonging to another dimension). The final group of peers will thus satisfy the relationship: 

 (See Figure 17). 

 



 
  

 

D3.2 System architecture Page 54 of 175 

 

Figure 17–The target group of peers G will be consisted of the peers marked with both blue and red 

colour  

Each peer then randomly selects log|G| other peers from its partial view, sends them the Publication or 

the Subscription VDI and stops. This implies that peers do not send data at every gossiping round – only 

once every time they receive a Publication or a Subscription VDI. This procedure is repeated by each 

peer for R rounds, where: 

 

Each peer that receives a Publication or a Subscription VDI during a gossip round, stores it in local 

buffers, which it will later be used for matching. On each round, the peer reads its buffers, reduces R by 

one, selects log|G| peers uniformly at random and sends the VDIs to these peers using their publication 

or subscription service endpoints, given in the registry. The time between rounds depends on the trade-

off we want between the delay of the VDI propagation and the resources’ utilization. 

Briefly: 

• When a peer receives a Publication or a Subscription VDI, it stores it in its buffers. The VDIs that 

have not been gossiped by this peer yet are marked as ready to go 

• When the time for gossiping has come, the peer reads its local buffers for VDIs marked as ready to 

go and: 



 
  

 

D3.2 System architecture Page 55 of 175 

o determines the partial view G. 

o extracts peers to gossip to. 

o reduces the gossip message TTL (initially, TTL ≡ Rounds) 

o sends the gossip message (including the VDI) to the selected peers. 

4.7 Event reporting 

Event Reporting provides a standardized mechanism for defining, identifying and sending notifications 

about events, where an event is defined by a set of conditions which, when met, trigger an event catch. 

The main conditions involve Users, VDIs and specific type of action executed on VDIs. Major classes of 

“reportable” Events include the following: 

(a) Events specific to the publish subscribe process, triggered by a “Match” action;  

(b) Events generated within a peer during processing of a VDI by an application (e.g. play of a Movie VDI, 

t creation of an annotation for a VDI, etc).  

 

The events listed under (a) only concern the process of content publication and the matching of it to 

subscription requests for concepts. For example, when a new VDI about a book is published, if some 

Users have subscribed to concepts related to the published content, a Matching event will occurred and 

an Event Report will be created to notify the users. 

 

The events listed under (b) are associated with the domain logic of a particular application and are 

specific to it. This implies that before using Event Reporting for notifications, applications have to define 

and catch relevant events. 

 

Event Reporting mechanism involves the two constructs defined below. 

1. Event Report Request(ERR). An ERR defines the conditions that trigger an event. Events defined by an 

ERR trigger the creation of an ER which contains information describing the event, as specified in the 

associated ERR. 

2. Event Reports(ER). ER are generated and sent according to the ERR. When the event occurs, an Event 

Report is generated and delivered to the specified recipient(s). The report contains the information 

requested. 

4.8 Rights Expression Language 

A Rights Expression Language (REL) is a machine-readable language that can declare rights and 

permissions using terms with an agreed semantics. A REL provides flexible, interoperable mechanisms to 

support publishing, distribution, and consumption of digital resources. This ensures that rights, 

conditions, and fees specified for digital resources are honoured and that personal data are processed in 

accordance with individual rights. 

The REL standardized by MPEG [25] adopts a simple, extensible data model for many of its key concepts 

and elements (see Figure 18). The MPEG REL data model for a rights expression consists of four basic 

entities and the relationship among those entities. This basic relationship is defined by the MPEG REL 

assertion “grant”. Structurally, an MPEG REL grant consists of the following: 



 
  

 

D3.2 System architecture Page 56 of 175 

 

1. The principal to whom the grant is issued 

2. The right that the grant specifies 

3. The resource to which the right in the grant applies 

4. The condition that must be met before the right can be exercised 

 

 
Figure 18 - The REL Data Model 

 

Principal: encapsulates the identification of principals to whom rights are granted. A principal denotes 

the party that it identifies by information unique to that individual. Usefully, this is information that has 

some associated authentication mechanism by which the principal can prove its identity.  

Right: the "verb" that a principal can be granted to exercise against some resource under some 

condition. Typically, a right specifies an action (or activity) or a class of actions that a principal may 

perform on or using the associated resource. 

Resource: the "object" to which a principal can be granted a right. A resource can be a digital work (such 

as an e-book, an audio or video file, or an image), a service (such as an email service, or B2B transaction 

service), or even a piece of information that can be owned by a principal (such as a name or an email 

address). 

Condition: the terms, conditions and obligations under which rights can be exercised. A simple condition 

is a time interval within which a right can be exercised. A slightly complicated condition is to require the 

existence of a valid, prerequisite right that has been issued to some principal. Using this mechanism, the 

eligibility to exercise one right can become dependent on the eligibility to exercise other rights. 

CONVERGENCE plans to use the existing language and semantics in Phase 1, but will substantially extend 

the elements of the language in the subsequent Phases to cope with an extended usage of the 

technology as demanded by CONVERGENCE. 

4.9 Content identification 

The CONVERGENCE system adopts three kinds of identifier: VDI Identifiers, VDI Sequence Identifiers 

and Network Identifiers.  

VDI Identifiers are used by CONVERGENCE Middleware (CoMid) to uniquely identify VDIs.  



 
  

 

D3.2 System architecture Page 57 of 175 

The VDI Sequence Identifier is used by the CONVERGENCE Middleware (CoMid) to uniquely identify a 

sequence of VDIs so as to support information updating. The VDI Sequence Identifier is contained in a 

VDI. 

When the information of a VDI needs to be updated, a new VDI is created with a different VDI Identifier, 

but with the same VDI Sequence Identifier. The VDI Sequence Identifier allows search and retrieval of 

the latest version of a VDI, or any preceding version. A VDI Sequence identifier has the form of a URI as 

better specified in D4.1 (section 6.2). 

The Network Identifier is used by CoNet to identify named-data or a service access point. The named-

data could be a VDI or a resource referred to in a VDI. A service access point is a network endpoint 

through which an upper-layer (CoMid or CoApp) entity sends/receives information.  

From a user point of view, Network Identifiers are handled as URIs; “inside” CoNet they are transferred 

inside the CoNet data unit, as specified in D5.1 (section 5.4). 

In what follow we describe how VDI identifiers are mapped to Network Identifiers in the default 

namespace. We use the following mapping: 

 

VDI identifier:  urn:CONVERGENCE:eu:identify-content-server-id:label 

Network Identifier:  identify-content-server-id/label 

 

Where the identify-content-server-id is a unique identifier associated with the CoMid identify content 

server that released the VDI identifier and label is a unique identifier that differentiates the VDI 

identified by the server. 

 

For instance, 

 

VDI identifier: urn:eu:CONVERGENCE:ics-CONVERGENCE:54ba64ed-a4e0-43e1-a22a-5e37a943ea19 

Network Identifier: ics-CONVERGENCE/54ba64ed-a4e0-43e1-a22a-5e37a943ea19 

 

To identify the resource the VDI refers to (e.g. a file) we use a traditional domain-name/path structure 

directly mapped in a PLHB (Principal Label Hash Based) Network Identifier. For instance: 

 

Plain domain-name/path:  test.wim.tv/CONVERGENCE-cedeo/ang.mp4 

Network Identifier:   test.wim.tv/CONVERGENCE-cedeo/ang.mp4 

 

where “test.wim.tv” is the identifier of the principal of the NID (e.g. the entity that can create NIDs using 

the Principal Identifier, see also section 7.1.3) and the label is “CONVERGENCE-cedeo/ang.mp4”  



 
  

 

D3.2 System architecture Page 58 of 175 

4.10 Publish / subscribe pattern 

4.10.1 Description 

Publish and Subscribe operations are carried out at the middleware level of the CONVERGENCE system. 

From the middleware perspective, publication of a Resource VDI involves the following main steps: 

• Creation of a Publication VDI containing 

o  Link to the stored Resource VDI (mandatory) 

o VDI Metadata, usually taken from the Resource VDI (mandatory) 

o Licence regulating access to the publication (optional) 

o Event Report Request defining reports to be issued when specific events occur 

(optional) 

• Injection of the Publication VDI into the overlay of peers forming the “discovery overlay” 

• Storage of the Publication VDI on the network 

Symmetrically, the subscription process involves: 

• Creation of a "Subscription VDI" containing 

o One or more representations of the semantic subscription to a set of metadata, in the 

form of a SPARQ query or a list of requested metadata (mandatory) 

o Licence regulating access to the subscription (optional) 

o Event Report Request defining reports to be issued when specific events occur 

(mandatory) 

• Injection of the Subscription VDI into the overlay of peers forming the “discovery overlay” 

• Storage of the Subscription VDI on the network 

This procedure enables search for subscriptions using standard Search Content procedures (see D5.1 for 

the Search Content protocol API, see the following chapter for details of Semantic Search Mechanisms), 

and easy matching of publications to subscriptions. Users are thus given the possibility of revoking their 

subscriptions and publications, and of extending/altering them at a later time, as with any other VDI. By 

using VDIs to carry subscriptions and publications, we allow CONVERGENCE to exploit the Event 

Reporting mechanisms defined in MPEG-21 part 15, embedding Event Report Requests into each 

Subscription and Publication VDI. Subscription and Publication VDIs are uniquely identified, and carry 

the requested metadata plus a reference to the address of the “home” peer of the user to be notified if 

a match is found. The reference can take the form of a peer identifier or User VDI. 



 
  

 

D3.2 System architecture Page 59 of 175 

The use of specific licenses for Subscription VDIs and sequences of Subscription VDIs, enable many 

possible extensions. For instance licenses could restrict the kind of information that can be subscribed to 

by a particular class of users or support focused “forgetting of subscriptions”, so that some subscriptions 

immediately disappear from the system if not satisfied, while other persist indefinitely. 

The subscribe operation is carried out by invoking a Subscribe Content Service. Similarly, the publish 

operation is carried out by a Publish Content Service. Both are complex operations, which involve a 

chain of Elementary Services. They are thus Aggregated Services. This implies there is no simple Publish 

Content ES, or Subscribe Content ES, but rather a pub/sub workflow involving coordination of 

middleware engines. 

CONVERGENCE publication and subscription operations fully comply with the “content based” 

publish/subscribe paradigm as defined in [19] and support structured semantic descriptions of content. 

This is much better than “topic based” approaches that require subscribers to know the full name of the 

content they require. 

Semantic subscription makes it possible to store requests for events that change the state of a certain 

specific VDI (e.g. creation of a new version of the VDI, revocation of the VDI, the creation of a link to the 

VDI). They also allow subscribers to subscribe to VDIs that have not yet been published e.g. VDIs for: 

- New models produced by John; 

- Special sales of mobile phones at a local store; 

- Users want to know about all the associations made on columns of a certain author; 

- Users want to be informed about releases of movies of their favourite actor; 

- Users want to know how many times other users have done certain things on their content. 

In CONVERGENCE the two cases above are equivalent and are treated using the same generic 

procedures. 

When users create a subscription they issue a (semantic) query. The system returns a list of results. The 

user can then select the most relevant VDIs from the matching list, and/or wait for results that will be 

notified later. This requires a system wide request that is universally understandable. It also shows one 

of CONVERGENCE’S “Unique Selling Points”. 

Today, when a user subscribes to a particular kind of CD in music.com (e.g. Iron Maiden CDs), she is 

informed of the CDs only when they are advertised in music.com. In CONVERGENCE her subscription is 

system wide and she receives a notification every time anyone publishes information about the CDs that 

interest her.  

Conceptually, the subscription process is split into three parts: 



 
  

 

D3.2 System architecture Page 60 of 175 

• Part 1: inserting a semantic subscription system wide 

• Part 2: matching a subscription once relevant content is published 

• Part 3: delivering a notification to the subscriber 

4.10.2 Part 1: inserting/storing a semantic subscription system 

wide 

We have two users: P (who publishes) and S (who subscribes). Consider the case in which the 

subscription is prior to the publication of material matching the subscription. 

When S subscribes, she provides semantic metadata, possibly organized in a complex query to filter out 

unwanted content and group and sort the results. These metadata are semantically validated by the 

CDS, which helps the user to formulate the query correctly (see relevant paragraphs about the CDS of 

this same deliverable, section CDS). 

S may optionally provide a licence governing the use of the information contained in the Subscription 

VDI.  

Along with these metadata, an Event Report Request is created. The ERR defines the event type that will 

trigger the notification (we call it a “Match” event type) and additional information needed to locate the 

peer that will receive the notification.  

This ERR is inserted into the Subscription VDI. As mentioned earlier, it includes so called 

"DeliveryParams" (see[26]), that is the address of the peer to be notified if the event occurs. According 

to the Event Reporting standard this can be an URI, a CoNet network resource (or service) name, a 

reference to a User VDI, an email address, etc. 

Therefore a Subscription VDI will contain: 

1. A structured description of the metadata of the resource the subscriber is interested in 

2. A Licence (defining who can do what with the subscription) 

3. An Event Report Request containing 

a. The verb “Match” applied to this Subscription Metadata and any corresponding Publish 

Metadata 

b. The Identifier of the Device or User receiving the Event Report 

This set of information is published to the system by injecting its content into the overlay and storing the 

full Subscription VDI on the network – the same mechanism used for publication.  



 
  

 

D3.2 System architecture Page 61 of 175 

4.10.3 Part 2: matching a subscription 

Later on, when P publishes content, she also provides the (semantic) metadata that best describes the 

published resource. The metadata are then injected into the system.  

When the gossiped information arrives at the destination peers, the procedure is reversed and all 

pending semantic search operations are performed on these peers, using those data as a target. If a 

subscription is found (say the subscription by S), that matches the target metadata, it becomes a match 

candidate. So, whenever a Publication VDI reaches a peer, at each publish, it is evaluated against 

outstanding semantic queries from Subscription VDIs known to the peer. 

With this approach, we implement a sort of rendezvous node between Subscription and Publication 

VDIs in the peers responsible for the common Resource Semantic Type (see section 4.6). 

4.10.4 Part 3: delivering matches to subscribers. 

Each match between a new publication and existing subscriptions generates an Event Report - the 

companion of the ERR embedded inside the matched Subscription VDI. The ER is delivered to the 

peer/user referenced in the matched Subscription VDI, using an appropriate transport protocol (e.g. the 

CoNet SendTo primitive is invoked, or an email is sent). When the user receives the notification, (an 

Application working on her behalf) can fetch the matching VDIs directly using the Deliver Content 

protocol. 

This solution makes use of the MPEG-21 Event Reporting standard, in conjunction with the concept of a 

Subscription VDI. In this way, we separate the MPEG-21 event notification mechanism from the internals 

of injecting metadata to peers. If required, the regular MPEG-21 event notification mechanism can still 

operate at the client-server level, within the scope of a custom application. To apply the MPEG-21 event 

notification mechanism system-wide we use specific Subscription VDIs to inject events. This requires the 

creation of a new verb (“Match”) in the Rights Data Dictionary (see[26]). Details of this extension to the 

MPEG-21 standard are left for future deliverables. 

4.11 Digital Forgetting 

4.11.1 Introduction 

In today’s digital world, it is extremely easy for users to publish information via websites, blogs, video-

sharing sites, social sites etc. Once the information has been published, it becomes instantly available to 

a potentially global audience. Search engines and web archiving tools ensure that copies of the 

information are rapidly disseminated beyond the site(s) where it was originally published. Private users 

may also make copies of and republish the information, usually without the knowledge of the original 

author. 



 
  

 

D3.2 System architecture Page 62 of 175 

As a result, it is practically impossible to locate all copies of information, and even harder to remove it 

from the network, even when the author is able to remove the information from the site where it was 

originally published. There are some circumstances in which this is what the author wishes. For instance, 

a political dissident may wish to ensure that it is impossible to eradicate her views from the network 

even if she herself should be forced to demand their removal. 

However, there are many other circumstances in which a user may legitimately wish to eliminate 

information she has published. The most commonly cited reasons are personal e.g. the wish to eliminate 

references to opinions the user no longer holds; the wish to eliminate personal information that has 

become embarrassing for the user. In other cases, there may be business reasons to withdraw 

previously published information (e.g. a company’s desire to update product information that has been 

shown to be inaccurate or information on promotional offers that are no longer valid). In summary, 

there is a mismatch between the Internet’s tendency to preserve information forever and the needs of 

users.  

4.11.2 Functional Requirements 

Against the background described in the previous paragraph, one of CONVERGENCE’s goals is to support 

the “Digital Forgetting” of content published on the CONVERGENCE network, allowing users to remove 

(or update, i.e. remove and re-insert a new VDI), information they have previously published. This goal is 

translated into formal requirements which are presented in section 7 of D2.1, (and will, therefore, not 

be readdressed here). 

To satisfy these requirements effectively, it will also be necessary to meet a number of secondary 

requirements. 

1 The creator of a VDI shall be able to define who can “unpublish” the VDI. The possible options 

shall include “no-one”. 

2 Any authorized user shall be able to unpublish the VDI 

3 Derived VDIs shall, by default, inherit expiry dates and rights to unpublish from the original VDI, 

if the publisher does not provide new ones. 

4 CONVERGENCE users shall not be able to retrieve an expired or unpublished VDI 

5 VDI search and subscribe services shall not return references to expired or unpublished VDIs 

6 Expired or unpublished VDIs shall be deleted from the CONVERGENCE network 

7 VDIs stored off the CONVERGENCE network shall expose expiry date data to third party 

applications, allowing users to verify if they have expired (this supports the introduction of 



 
  

 

D3.2 System architecture Page 63 of 175 

provisions to make use of expired VDIs illegal) 

8 Users should be able to specify that a VDI has no expiry date (i.e. that it is intended to be 

“eternal”) 

4.11.3 Digital Forgetting Mechanisms 

To satisfy the requirements defined above, CONVERGENCE will support two forms of Digital Forgetting. 

• Pre-planned Digital Forgetting – the CONVERGENCE system defines a default expiry date for all 

the Publication VDIs published to the CONVERGENCE system. The publisher of a VDI has the 

ability to override the default value at publication time. He/she can also define who (if anyone) 

is authorized to change the expiry date. This information is, by default, inherited by derived 

VDIs. Publication VDIs that have passed their expiry date are no longer retrievable by 

CONVERGENCE users and are no longer referenced in results from CONVERGENCE search and 

subscribe services. The associated Content VDI will also be eliminated from CONVERGENCE 

CoNet. 

• On-demand Digital Forgetting – when publishing a Publication VDI, the publisher can define who 

(if anyone) has the right to unpublish it, (default value: the publisher). The CONVERGENCE 

system will enable authorized users, at any time after publication, to request the removal of a 

Publication VDI, (and associated Content VDI) from the system. The system will then proceed to 

asynchronously eliminate all stored versions of the Publication VDIs (and their associated 

Content VDIs), and eliminate all semantic metadata about the VDI, wherever it is stored in the 

system. Once this operation has been completed, the Publication VDI (and its associated 

Content VDI), will no longer be retrievable and will no longer appear in search or subscription 

results. The removal of the Publication VDI will not prevent access to, retrieval and consumption 

of other Publication VDIs in the same VDI sequence. Other Publication VDIs that declare 

relationships with the unpublished VDI will remain accessible. However, these relationships will 

then point to an irretrievable object. On reception of the revocation command, from CoMid, the 

CoNet performs the appropriate removal actions. 

4.11.3.1 Pre-planned Digital Forgetting 

During the publishing process, the publisher specifies the time and date at which the VDI will expire. The 

operational workflows will proceed as follows: 

• At Pub VDI publication time: 

o The publisher specifies the date and time at which the Pub VDI will expire, which should 

be before the expiry date of the targeted Resource VDI (Res VDI).  



 
  

 

D3.2 System architecture Page 64 of 175 

o At the CoMid level:  

� CoMid Publish Content Aggregated Service (PCAS) uses the Overlay TE to gossip 

the new Publication VDI through the system. 

� PCAS submits the Publication VDI to CoNet, for storage and distribution.  

o At the CoNet level:  

� CoNet stores and disseminates the submitted digital objects as sets of Named-

data CoNet Information Units (CIUs, see 7.1) (with a field specifying their expiry 

date). 

• At Publication VDI expiry time (more precisely, from the expiry time onwards):  

o At the CoMid level: 

� The Match TE which handles the matching between Pub and Sub VDIs, detects 

that the corresponding entry in the table is no longer valid and removes it. 

o At the CoNet level: 

� Serving nodes and border or internal nodes delete the named-data CIUs in 

question (those that contain the Pub and Res VDIs), and no longer cache or 

distribute them. 

From the Publication VDI expiry time onwards, the CoMid level will no longer contain any trace of the 

expired Publication VDI and the Publication VDI will no longer be retrievable from the CoNet. 

From the Resource VDI expiry time onwards, it will also no longer be retrievable from CoNet.  

4.11.3.2 On-demand Digital Forgetting 

In this mode of Digital Forgetting, an authorized user specifies his/her desire for the removal 

(unpublishing) of a Publish VDI for which he/she has “unpublish rights”.  

Given that CONVERGENCE incorporates a dynamic set of peers that can join or leave the system at any 

time, complete and synchronous removal of a Publication VDI from CoMid is not possible. 

CONVERGENCE therefore adopts an asynchronous approach: 

• An authorized user issues a request for the removal (unpublishing) of a Publication VDI. 

o At the CoMid level: 



 
  

 

D3.2 System architecture Page 65 of 175 

� CoMid Unpublish Content Aggregated Service uses the Revoke Content PE 

(RCPE), requests relevant peers to eliminate the metadata contained in the 

Publication VDI to be revoked 

• The RCPE creates an UnPublish VDI which references a specific Pub VDI. 

The UnPub VDI declares that its targeted Pub VDI is no longer valid and 

should be eliminated from match tables. 

• The UnPublish VDI is gossiped throughout the peer collective 

(employing the Overlay TE) and ends up in the same peers as the 

corresponding Publish VDI. 

• On receiving the UnPub VDI, peers perform the appropriate “forgetting” 

activities. 

� The Unpublish Content Aggregated Service issues a revocation command to 

CoNet, for the deletion of the Pub VDI in question. 

o At the CoNet level: 

� On reception of the revocation command, from CoMid, the CoNet performs the 

appropriate removal actions. 

Forgetting of the UnPub VDI is handled at the system level. The life cycle of these VDIs is defined as 

follows. 

• At UnPub VDI production/injection time: 

o The UnPub VDI is mandatorily given the same expiry date as that of its associated Pub 

VDI. 

o at the CoMid: 

� The CoMid Revoke Content Aggregated Service (PCAS) uses the Overlay TE to 

gossip throughout the system, the new UnPub VDI.  

Given that the UnPub VDI has the same expiry date as that of its associated 

Publication VDI, it will circulate for as long as there is some possibility that 

metadata in the Pub VDI is still “circulating” in the system 

• At UnPub VDI expiry time (more precisely, from the expiry time onward):  

o at the CoMid level: 



 
  

 

D3.2 System architecture Page 66 of 175 

� The Match TE detects that the corresponding entry in the table is no longer valid 

and removes it. 

4.12 Real world descriptors 

As a part of the CONVERGENCE vision, we need the ability to describe Real World Objects. However, 

creating descriptors for all type of objects would be a very major project. Many organizations have 

produced ontologies or XML schemas for specific domains. For instance, the Association for Retail 

Technology Standards (ARTS) of the National Retail Federation [42] has developed an XML based schema 

applicable across multiple retail vertical segments including general merchandise, grocery, convenience, 

food and drugs. This schema is useful and the CONVERGENCE definition of VDIs for the retailing scenario 

will “include” and take advantage of these efforts. However its main focus is on the exchange of item-

related data between systems within the confines of a retail enterprise, and it is not perfectly adapted 

to the consumer electronics domain we will consider in the CONVERGENCE trials. 

In CONVERGENCE we will develop additional domain ontologies and use them to generate suitable 

descriptors for VDIs about products in order to integrate them with existing retail applications. 

For a standard coverage of this topic see ANNEX B – Survey of solutions of real world descriptors. 

4.13 Semantic Search and Content Matching 

This section provides a detailed explanation of the implementation of semantic search in 

CONVERGENCE. As in other P2P search overlay structures, the protocol is fundamentally asynchronous. 

However CONVERGENCE’S publish/subscribe paradigm provides additional decoupling in time and 

space. Search requests are carried in VDIs. An expiry date dictates whether the user wishes for an 

immediate reply (as in present-day search engines) or is willing to accept results which may come in the 

next hours or days. Aggregation of similar results is carried out by the event report service that notifies 

the user of relevant matches. Below we provide a detailed walkthrough of the process. 

A CONVERGENCE-compliant Application is running on a random PeerX (maybe a public device in the city 

hall, or the user’s iPad). The application uses services and technologies offered by the CoMid. 

0. User UserA, types in some metadata (e.g. resource MOVIE, and genres SCI_FI and CRIME), 

related to resources she wants to subscribe to. 

1. The application invokes the CDS.  

• The CDS expands the request by finding appropriate concepts in known domain ontologies. 

For example, if the user accepts the IMDB Mapping Movie Ontology [41] (or if the search 

Application accepts it on her behalf) the CDS maps the user request to the imdb:Movie and 

imdb:Genre classes. 



 
  

 

D3.2 System architecture Page 67 of 175 

• The CDS formulates a correct semantic query that reflects the subscription. For example 

“SELECT ?x WHERE {?x a imdb:Movie . ?x imdb:genres “SCI-FI” . ?x imdb:genres “CRIME”}”, 

where the prefix imdb: qualifies the IMDB ontology. 

• The CDS helps the user find one (or more) Resource Semantic Types within the 

CONVERGENCE Core Ontology, and possibly within other semantic dimensions (see chapter 

on Overlay TE, section Overlay TE), appropriate for the subscription. For example the user 

might select the cco:VIDEO semantic type, where cco: is the prefix of the CONVERGENCE 

Core ontology. In this way, the user exploits the concept of fractals and focuses the search 

on peers that are interested in the cco:VIDEO type of content, (peers that have previously 

published or subscribed to cco:VIDEO content and have actively joined the fractal). The CDS 

prepares an incomplete metadata tag describing the Resource Semantic Type of the new 

Subscription VDI (the VDI identifier is still not known). 

2. The application invokes Create Content. 

• A Subscription VDI is created which contains: 

o A unique identifier (SVDI_1) 

o The completed metadata indicating the core semantic type of the VDI, i.e. an RDF 

triple such as {SVDI_1 cco:hasReST cco:VIDEO}, embedded inside a didl:Descriptor 

tag. 

o The requested query, inserted into another didl:Descriptor tag 

o Licence and ERR 

o Expiry Date of the VDI. 

• The ERR says "notify peer PeerA if match". PeerA is the "home" peer of UserA. It is a peer 

that will receive the match notifications (the Event Reports).PeerA runs the Store Event and 

the Request Event servers "of the user". 

3. The application invokes Inject Content (see Figure 19). 

• If PeerX is not yet a member of the cco:VIDEO fractal, it registers to it and joins. 

• Information about the Subscription VDI is circulated in the fractal. Thus, the Subscription 

VDI SVDI_1 reaches the peers that participate in the overlay fractal assigned to it, i.e. the 

fractal named “VIDEO” (a fully qualified name would be in the form 

urn:overlay:registry:cco:video ). 

• Each peer extracts information contained within the Subscription VDI (the identifier of the 

VDI, the embedded query and any additional metadata, license, ERR) and copies it to its own 

“Subscriptions Table”. The “Subscriptions Table” keeps track of all Subscription VDIs that 

reach the peer, and indexes them using their VDI identifier. 



 
  

 

D3.2 System architecture Page 68 of 175 

PeerM

Publications Subscriptions 

SVDI_32
SVDI_111
SVDI_1 ?x Imdb:Movie

…
Expires 2/2/2012
Notify PeerA

PVDI_4442
PVDI_2311

PVDI_34

PeerX
SVDI_1

PeerM1

SVDI_1
PeerM2

SVDI_1

 

Figure 19 – Semantic Subscription SVDI_1 reaches PeerM, PeerM1 and PeerM2 of the VIDEO fractal 

4. The application invokes Store Content. 

• The Subscription VDI is stored by CoNet as a generic network resource (just like any other 

VDI). This means that knowledge about the subscription is no longer restricted to the CoMid 

and can be made available to crawlers that are not based on CoMid (subject to security 

restrictions enforced by CoNet).  

Another user makes a publication at a later time. That is: on a random PeerY (see Figure 20): 

0. A user decides to publish a resource (e.g. a movie) for which he (or somebody else) has already 

created a Resource VDI. The Resource VDI describes the movie and the license that regulates 

access to it. The Publication VDI copies those Descriptors and adds an expiry date and license. 

Metadata describing the resource is collected from its Resource VDI, and possibly refined by the 

user. The user now has the role of a publisher. We assume the author of the resource has given 

her permission to publish it.  

• RDF triples describing the movie are extracted from its Resource VDI RVDI_23. The movie 

has been described using an alternative domain ontology about movies (e.g. the Movie 



 
  

 

D3.2 System architecture Page 69 of 175 

Ontology at www.movieontology.org), which focuses on a specialized taxonomy of movie 

genres). 

• The following RDF Descriptor tags, taken from the original Resource VDI, are inserted into 

the new Publication VDI: 

o {RVDI_23 rdf:type movientology:Movie} 

o {RVDI_23 movientology:belongsToGenre movientology:Sci-Fi} 

o {RVDI_23 movientology:belongsToGenre movientology:Thrilling} 

o {RVDI_23 movientology:belongsToGenre movientology:Actionreach} 

The subject of the above semantic relationships is obviously the original resource VDI. They 

are now inserted into another VDI. This possibility is ensured by CONVERGENCE’s concept of 

semantic links between VDIs. A specific tag allows RDF fragments to describe a VDI. In the 

case of publications, such VDIs simply state that they carry information about other VDIs. 

1. The application invokes the CDS. 

• The CDS helps the user find one (or more) Resource Semantic Types within the 

CONVERGENCE Core Ontology or other shared semantic dimensions that provide 

appropriate classifications for the publication. For example the user selects the cco:VIDEO 

semantic type  

2. The application invokes Create Content. 

• A Publication VDI is created that contains: 

o A unique identifier(PVDI_1) 

o The original didl:Descriptor metadata tags, now “describing” the Publication VDI 

o An RDF metadata triple describing the core semantic type of the Publication VDI and 

thus indicating the Publication VDI’s destination fractal in the overlay (this 

information is embedded in another didl:Descriptor) 

o An explicit reference to the Resource VDI the Publication VDI refers to, i.e. {PVDI_1 

cco:isPublicationOfRVDI_23} 

o Optionally a licence and an ERR, if the publisher wants to limit discoverability of the 

publication or to be notified when the publication is matched 

o Expiry Date of the VDI. 

3. The application invokes Inject Content  

• If PeerY is not yet part of the cco:VIDEO fractal, it registers to it and joins 



 
  

 

D3.2 System architecture Page 70 of 175 

• Information about the Publication VDI is circulated: PVDI_1 reaches the peers that 

participate in the overlay fractal assigned to it, i.e. the “VIDEO” fractal. 

• Each peer extracts information contained in the Publication VDI (the identifier of the VDI, all 

metadata, license, ERR) and copies it to its own “Publications” table. The “Publications” 

table keeps track of all Publication VDIs that reach the peer, and indexes them using their 

VDI identifiers. 

PeerM

Publications Subscriptions 

SVDI_32
SVDI_111
SVDI_1 ?x Imdb:Movie

…
Expires 2/2/2012
Notify PeerA

PVDI_4442
PVDI_2311

PVDI_34
PVDI_1

PeerY

PVDI_1

PeerM2

PVDI_1

PeerM1

PVDI_1

PVDI_1 isPublicationOf RVDI_23
RVDI_23 movientology:Movie
…
Never Expires 

 

Figure 20 – Publication PVDI_1 reaches PeerM, PeerM1 and PeerM2 of the VIDEO fractal 

4. The application invokes Store Content. 

• The Subscription VDI is stored by CoNet as a generic network resource generic network 

resource (just like any other VDI). This means that knowledge about the subscription is no 

longer restricted to the CoMid and can be made available to crawlers that are not based on 

CoMid (subject to security restrictions enforced by CoNet) 

The publication and the subscription VDIs reach several rendez-vous peers of the VIDEO fractal. Let us 

observe one of them. On PeerM (see Figure 21): 



 
  

 

D3.2 System architecture Page 71 of 175 

PeerM

Publications Subscriptions 

SVDI_32
SVDI_111
SVDI_1
…

?x Imdb:Movie
…
Expires 2/2/2012
Notify PeerA

PVDI_4442
PVDI_2311

PVDI_34
PVDI_1

…

PeerA

PVDI_1 isPublicationOf RVDI_23
RVDI_23 movientology:Movie
…
Never Expires 

CDS 
movientology:Movie

= 
Imdb:Movie

MatchTE
SELECT :Movie FROM {PVD I_1, PVDI_34, PVD_2311, …} 

PeerM2

{ER1, ER2} 
{ER_12} 
…

Pubs Subs Event Reports 

RVDI_23

ER1

ER2

 

Figure 21 – Subscription is matched by PeerM and PeerM1 

 

5. Match TE constantly monitors peer tables and is triggered on arrival of a Publication VDI or a 

Subscription VDI. The goal of the Match TE is to perform a match between the SPARQL queries 

embedded inside the Subscription VDIs stored in the “Subscriptions” table, and the metadata 

stored in the peer’s “Publications table”. 

• When a Publication VDI arrives at the peer, the full list of SPARQL queries in the 

“Subscriptions” table is scanned, and run against the newly arrived metadata. 

• When a Subscription VDI arrives at the peer, the embedded SPARQL query is run against the 

full list of metadata found in the “Publications table”. 

Before attempting to match a SPARQL query against the available data, the system evaluates 

possible semantic equivalences between concepts belonging to different ontologies. To do this 

• Match TE invokes CDS. 



 
  

 

D3.2 System architecture Page 72 of 175 

o The CDS asserts a semantic equivalences between the imdb:Movie class and the 

movieontology:Movie class, between the movientology:belongsToGenre property 

and the imdb:genres property, and between the movientology:Sci-Fi individual of 

type movientology:Genre and the “Sci-Fi” literal assigned to the imdb:genres 

property
3
. The task of finding equivalent genres is greatly facilitated by the 

preliminary assertion of the equivalence of associated properties (preceding bullet), 

and of course matching of the literal with the individual name. 

If more than one SPARQL query is to be executed the Match TE runs a query engine capable of 

processing semantic queries. The target data for the query is the aggregate of all metadata 

relevant to the query, after query expansion of the semantic classes. Match TE asks what are the 

RDF triples that satisfy the query and fetches them. 

If matching RDF triples are found, a "Match Event" is triggered. The ERR is extracted from the 

Subscription VDI, the address of PeerA is read and companion ER is generated. 

The ER is filled with the identifiers of all Resource VDIs known to PeerM, which contain matching 

metadata RDF triples. 

6. Match TE invokes Event Report TE 

• The ER is sent to PeerA using the transport protocol specified in the original ERR, and 

invoking PeerA’s Store Event service. 

 

Different peers in the VIDEO fractal send Event Reports, notifying successful match events, and deliver 

them to PeerA. Note that some of the peers of the fractal may not be able to infer semantic 

equivalences because not all CDS engines have the proper dictionary to translate between the 

movieontology: and imdb: ontologies. 

0. Since PeerA may receive several match notifications from different peers of the fractal, the peer 

performs a “notification fusion” eliminating duplicate VDI ids matching the subscription. 

When the user wants to check whether her home peer has received new notifications, she polls 

the Request Event service of PeerA from PeerX, where she is currently located. Alternatively, if 

PeerA is the user’s mobile/laptop of the user, a GUI alert pops when the ER is received. 

                                                           
3The IMDB ontology contains a detailed taxonomy of genres in the form of a class hierarchy. The Movieontology 
allows representation of genres through string literals. 



 
  

 

D3.2 System architecture Page 73 of 175 

4.14 CoMid Security 

This section details the methodology introduced in section 3.4, starting with the identification and 

authentication of CONVERGENCE entities. 

4.14.1 Roles 

Among other things, the CoMid security provides the technical means for handling identification and 

authentication of CONVERGENCE entities. In this section, we provide the definition of these concepts, 

we identify the roles responsible for implementing these concepts, the assets that are the objects of 

these security concepts, the threats related to these assets, the objectives needed to address the 

threats and the security functional requirements that derive from the previous objectives. We will begin 

by defining identification and authentication: 

Table 1 – Definition of Identification and Authentication in CONVERGENCE 

Term Definition 

Identification This is the process of assigning an identifier to an entity (like a user, end-user, 

device, etc.). Identification is usually considered to be a sub process of 

registration, and is essentially performed once for each entity prior to any action 

performed by him or it. 

Authentication This is the process of proving a claimant's identity on the moment of request. 

Authentication is a regular procedure usually required prior to processing any 

request of a claimant.  

Note: The first definition is taken from the MPEG environment and deviates from common definitions 

for “identification”, which often comprise authentication (proof of identity) or determination of an 

identity. 

 

The two basic roles with regard to the handling of identification and authentication in CONVERGENCE 

scenarios are Identity Provider and Service Provider. 

 

Identity Provider 

The Identity Provider is responsible for the registration of users. This may involve: 

1. Identification, i.e. assignment of identifiers; including issuance of certificates 

2. Verification of credentials 

3. Enforcement of governing policies 



 
  

 

D3.2 System architecture Page 74 of 175 

4. Revocation/Renewal of identities 

Depending on the scenario, registration can be a simple assignment of an identifier from a name space, 

or an extensive procedure involving validation of personal data and additional information. 

The Identity Provider is a trusted third party usually independent of the users within a specific scenario. 

To mention some examples, in a university scenario the Identity Provider might be a commission made 

up of professors, while in a governmental application it might be a government agency. 

The Identity Provider does not normally interfere with the “regular” daily business of using the 

identifiers assigned to entities. 

 

Service Provider 

The Service Provider is in charge of “daily” business involving users, entities, etc. for a specific scenario. 

Apart from its general obligations (depending largely on the underlying application) these may comprise: 

1. Authentication, i.e. verification of claimant's identities, and proof of its own identity. 

2. License issuance 

3. License validation 

Although the two roles – Identity Provider and Service Provider – may coincide for special applications, 

they are normally strictly separated. On the one hand, an Identity Provider may seek private information 

from users which are not intended to be revealed to Service Providers. (The Service Provider needs to 

trust the Identity Provider for correct verification.) On the other hand, detailed data gathered by Service 

Providers should not be disclosed to an Identity Provider. (For instance, detailed profiles of customers' 

shopping behaviour should remain confidential to a Service Provider; especially in the case of different 

Service Providers who are competitors in the market.) 

4.14.2 Assets 

Assets basically comprise: 

a. Assets related to VDIs 

b. Assets related to users (end-users, peers, etc.) and services (service applications) 

c. Assets related to engines (software packages) in the CONVERGENCE middleware. 

 

The following assets have been identified for the CONVERGENCE framework: 

Table 2 – CoMid security Assets 

No ID Asset Description 



 
  

 

D3.2 System architecture Page 75 of 175 

1 ASS.VDI-ID VDI Identification Each VDI is assigned a unique identifier. A VDI 

identifier is never used twice, not even for two 

related or “updated” VDIs. 

2 ASS.VDI-INT VDI Integrity A VDI comprises components such as content, 

metadata, annotations, inter alia. The VDI's 

unique identifier is also considered one of its 

components. The integrity of a VDI therefore 

refers to the VDI as a whole, including its 

identifier. A VDI should always and forever 

remain unchanged once it has been published, 

until possible revocation. The identifier must be 

unique for each VDI, in particular the identifier 

“Anonymous” is not allowed.  

3 ASS.VDI-AUTH VDI Authenticity Beyond integrity, VDI authenticity refers to the 

origin of a VDI. VDI authenticity describes the 

assurance for a user that the VDI has indeed 

been created by the entity claiming its creation. 

4 ASS.USER-ID User Identification A user may be a human end-user, or a device, 

or a network peer. Like a VDI, a user is 

identified by assigning an identifier to him or it. 

Identifiers are unique in the sense that no two 

users are allowed to share the same identifier. 

Unlike the situation for VDIs, one and the same 

user may – under certain circumstances – hold 

different identifiers at the same time. Even the 

identifier “Anonymous” shall be supported, 

depending on the underlying policy. 

5 ASS.USER-AUTH User Authenticity Users authenticity refers to assurance of the 

“integrity” of a user at the moment of his or its 

identity claim. In other words, the authenticity 

of a user claiming a specific identity describes 

the fact that the claimant is indeed the one to 

whom the identity has originally been assigned. 

6 ASS.SERV-AUTH Service/Application 

Authenticity 

Service (Application) authenticity defines the 

integrity of the service upon the moment of its 



 
  

 

D3.2 System architecture Page 76 of 175 

identity claim. Each user (in particular human 

end-user) shall – at his or her discretion – gain 

assurance that a service claiming a specific 

identity is indeed the one to which this identity 

has been assigned. 

7 ASS.ENG-ID Engine Identification This asset refers to the identification of an 

engine. 

8 ASS.ENG-AUTH Engine Authentication This asset refers to the authenticity of an 

engine, here meaning its integrity and possibly 

origin. 

9 ASS.ENG-VDI VDI technology 

engines 

This asset refers to technology engines handling 

VDIs. 

10 ASS.TE-LIC License Technology 

Engine 

This asset refers to licensing technology, 

referring both to issuance and compliance. 

11 ASS.TE-ER Event Reporting 

Technology Engine 

This asset refers to monitoring and reporting of 

events. 

12 ASS.SEC Security Technology 

Engine 

This asset refers to software and hardware 

handling cryptographic services, and interfacing 

CoSec. 

 

4.14.3 Threats 

The following threats have been identified for the CONVERGENCE framework: 

Table 3 – CoMid Security Threats 

No ID Description 

1 T.VDI-ID-NONE A VDI may not have been assigned an identifier prior to publishing. 

2 T.VDI-ID-MULT One and the same VDI may be assigned multiple identifiers. 

3 T.VDI-ID-NONUNIQUE A VDI may be assigned an identifier which has already been 

assigned to another VDI. 

4 T.VDI-ALTERED Components of a VDI may be altered after publishing. 



 
  

 

D3.2 System architecture Page 77 of 175 

5 T.VDI-ID-REPLACE The identifier of a VDI may be exchanged with another identifier; 

the remaining content remaining unchanged. 

6 T.VDI-CONTENT-

REPLACE 

The (entire) content of a VDI may be replaced or altered while 

keeping its identifier. 

Note: T.VID-ID-REPLACE and T.VDI-CONTENT-REPLACE are special 

cases of T.VDI-ALTERED. The identifier of a VDI is considered to be 

a component of the VDI. 

7 T.VDI-AUTH-REMOVE The origin of a VDI which has originally been stated may be 

removed, making it impossible to determine its creator. 

8 T.VDI-AUTH-ALTER The origin of a VDI may be altered, suggesting that the VDI has 

been created by an entity different from the one that really 

created it. 

9 T.USER-ID-NONE A user does not receive an identifier although – by the policies in 

place – he or she is required to hold one. 

10 T.USER-ID_MULT A user may be assigned multiple identifiers in a situation where 

unambiguous identification is a requirement. 

11 T.USER-ID-AMBIG A user may be assigned an identity which has already been 

assigned to another user. 

12 T.USER-AUTH-FORGE A user tries to authenticate himself or itself under a “false” identity 

which has not been assigned to him (i.e. it has been assigned to 

someone else, or not assigned to anyone at all). 

13 T.SERV-AUTH-FORGE A service (application) tries to authenticate itself under a “false” 

identity, namely an identity which has not been assigned to it. 

14 T.SERV-AUTH-MISS 

 

A service fails to authenticate itself although it has explicitly been 

requested to do so by another user, or is implicitly required to do 

so under policies in force. 

 

4.14.4 Objectives 

The following security objectives have been identified for the CONVERGENCE framework: 

Table 4 – CoMid Security Objectives 

No ID Description 

1 O.VDI-ID-UNIQUE In order for each VDI to obtain a unique identifier, it is not up to 

the discretion of the creator of a VDI to assign an identifier to it. 



 
  

 

D3.2 System architecture Page 78 of 175 

Instead, servers will draw these identifiers from disjoint name 

spaces and assign an identifier to each VDI before publishing. 

Following publishing, no VDI may be altered in any way prior to 

possible revocation. 

2 O.VDI-INT The integrity of a VDI is regarded as critically important: A VDI 

must remain unaltered throughout its lifetime, i.e. after publishing 

and before revocation. This refers to its entire extent, including in 

particular its identifier, and any components like metadata, 

references, annotations, or content. 

3 O.VDI-AUTH Where required or granted by the creator, the origin of a VDI must 

remain unchanged throughout its lifetime. In such cases, a user 

shall be able to gain assurance about the authenticity of a VDI. 

Note: however that it may be allowed – depending on the policies 

in place – to create a VDI anonymously, or on behalf of a group of 

users, or under a pseudonym. 

4 O.VDI-AUTH-ALTER It shall be impossible – or at least detectable – to alter the origin of 

a VDI that has been stated during its creation. To this end, if an 

origin is claimed, the origin shall be ascertained during creation in 

such a way that it can be verified by an independent party. 

5 O.VDI-AUTH-REMOVE It shall be impossible – or at least detectable – to remove a claim 

(and assurance) of origin of a VDI which has been included by its 

legitimate creator. 

6 O.USER-ID A service shall be provided responsible for assigning a unique 

identifier to each user. This process shall be part of a registration 

procedure, governed by an independent party acting in the role of 

an Identity Provider. 

Note: The interpretation of the registration procedure may vary 

considerably for different scenarios, ranging from simple identifier 

assignment from a name space to governmental procedures 

encompassing passport or even biometric validation. 

7 O.USER-AUTH 

 

Each user shall be able to authenticate his claimed identity to an 

independent party. 

Note however that we allow four types (categories) of identities a 

user may hold. All four shall be generally supported by 

CONVERGENCE. The identities actually supported depend on 

specific use cases. The four types of identities will be outlined in 

the section “Security Functional Requirements” as F.USER-ID-

SINGLE, F.USER-ID-GROUP, F.USER-ID-PSEUDONYM and F.USER-ID-



 
  

 

D3.2 System architecture Page 79 of 175 

ANONYMOUS. 

8 O.SERV-ID Unlike for users, services (applications) shall have a unique (non-

anonymous) identification. 

9 O.SERV-AUTH 

 

A server shall be able to authenticate to a user at any time. A 

server shall authenticate to a user at the user's discretion, or if 

required by underlying policies. 

 

4.14.5 Security Functional Requirements 

The following security functional requirements have been identified for the CONVERGENCE framework: 

Table 5 – CoMid Security Functional Requirements 

No ID Description 

1 F.USER-ID-UNAMBIG 

 

The Identity Provider shall ensure that no identifier is used twice 

for different users. (This requirement does not conflict with the 

group identity, since in such case the group as a whole is 

considered as the user in the sense of the definition above.) 

Note: It may however – depending on policies – be admissible to 

assign multiple identities to one and the same user. 

2 F.USER-ID-UNIQUE If required by underlying policies, the Identity Provider shall be 

able to ensure that each user will receive a unique identifier. 

3 F.USER-ID-MULT Depending of underlying policies, a user may have multiple 

identities: 

a. In the CONVERGENCE instance, if it so allows 

b. With different Service Providers, if they so allow 

c. With the same Service Provider, if he so allows 

4 F.USER-ID 

 

A user shall be identified by an Identity Provider in order to be able 

to authenticate and access specific services of a CONVERGENCE 

instance. 

Moreover, a user shall be offered the possibly Service Provider - 

dependent choice of identification listed below as F.USER-ID-

SINGLE, F.USER-ID-GROUP, F.USER-ID-PSEUDONYM and F.USER-ID-

ANONYMOUS. 

a. An individual/organization or 

b. A member of a group without disclosing his individual 

identity (identity can only be revealed by the group 



 
  

 

D3.2 System architecture Page 80 of 175 

administrator) 

c. A context dependent Pseudo-identity 

d. Entirely anonymous  

5 F.USER-ID-SINGLE 

 

A user (end-user as well as organization) shall be able to 

authenticate himself under a single – and unique – individual 

identity confirmed to him by an Identity Provider. 

Note that this type is considered to coincide with the “ordinary” 

use of an identity to be normally confirmed through a proof of 

possession of a specific secret. Note also that this does not rule out 

the use of multiple single identities being assigned to one and the 

same user where policies admit this. 

6 F.USER-ID-GROUP 

 

A user shall be able to register as a member of a specific group of 

users. This registration is carried out by the Identity Provider 

setting up this group. 

In this case, the user shall be able to authenticate himself as a 

legitimate member of the registered group, though remaining 

entirely anonymous within the group. 

This type of identity is supported by cryptographic procedures 
known as group signature schemes. These schemes allow 
members of a group to issue signatures on behalf of the entire 
group, while staying anonymous as individual members of the 
group. The schemes also allow unveiling of anonymity in the 
aftermaths, and revocation of individual members with the explicit 
cooperation of the “group administrator”. In other words there is an 
entity which is able to unveil anonymity, as it may be required by 
regulation. 

7 F.USER-ID-PSEUDONYM Each user shall be able to hold context-specific pseudonyms, and 

to authenticate himself within each context by the according 

pseudonym. A user's pseudonyms are unique within each context, 

but different and not linkable across different contexts. 

Pseudonyms are generated according to a key scheme set up, and 

not at the discretion of the users. 

This type of pseudonyms is supported by the technique of 

“Restricted Identification” as deployed by the German Electronic 

Passport. 

8 F.USER-ID-

ANONYMOUS 

A user shall be able to act under an entirely anonymous identity, 

making his appearances absolutely indistinguishable from any 

other instance of other users of even his own. 

In other words, the identity “Anonymous” shall be considered as 

“void”. 



 
  

 

D3.2 System architecture Page 81 of 175 

9 F.USER-AUTH-CONV 

 

A user shall be authenticated in order to access specific services of 

a CONVERGENCE instance, using one of the four types of identities 

listed under F.USER-ID. 

10 F.USER-AUTH-SERV 

 

Users may need to be further authenticated by a service 

application, depending on specific requirements of the application. 

11 F.SERV-ID 

 

Each application service shall be identified by one or more Identity 

Providers with a trust relationship with the entity running the 

CONVERGENCE instance. Each application shall receive a unique 

(non-anonymous) identifier. 

12 F.SERV-AUTH 

 

A user shall be able to request authentication of an application. An 

application shall be able to authenticate upon such request, and is 

required to do so depending on policies. 

13 F.PEER-AUTH Peers may need to mutually authenticate. 

14 F.ENG-ID Identification is a CONVERGENCE-governance issue and ensures 

that any identifier is unique. Engines shall be identified by an 

Identity Provider. 

15 F.ENG-INT Engines shall have the ability to verify (i.e. check the integrity of) 

an engine. 

16 F.ENG-AUTH 

 

An engine shall be authenticated by a peer downloading and 

installing it. 

Note: Assuring correct download and installation is not enough to 

guarantee proper operation throughout the lifetime of the device. 

However, since device integrity is a far too complex matter to be 

handled by CONVERGENCE, we make the assumption that – once 

correctly installed – engine software will be operated on a 

trustworthy device. 

The usage of smart card technology can to some extend mitigate 

this assumption, since at least a partial control of device integrity 

becomes possible when using the smart card as a trusted hardware 

security module. 

17 F.ENG-VDI The VDI TE shall have the ability to: 

a. Identify a VDI and its components 

b. Sign a VDI and its components (individual and group 

signature) 

c. Make accessible parts of a VDI only to certain users 

(access restriction) 



 
  

 

D3.2 System architecture Page 82 of 175 

d. Authenticate the creator of a VDI 

e. Verify a VDI and its components (verify the integrity) 

Note: c. will usually require encryption. The challenge arising in a 

context where many (or most) VDIs are encrypted for many 

recipients does not lie with encryption itself, but with key escrow. 

In other words, efficient handling of key management will become 

a major concern for system administrators trying to build up a 

CONVERGENCE instance using VDIs with access restriction. 

18 F.ENG-VDI-SIGN-

THPART 

 

A user may use the services of a trusted third part to sign a VDI. 

Note: this requirement reflects a privacy concern arising in an 

environment where end-users regularly sign their VDIs. An 

abundance of signatures may lead to serious privacy concerns 

since they allow tracking and profiling of users (even for encrypted 

VDIs). 

19 F.TE-LIC-ISS The License TE shall have the ability to create a license whose 

principal may be a user as defined above. 

20 F.TE-LIC-ENF The License TE shall have the ability to enforce a license, i.e. force 

a peer to comply with rights included in a license. 

21 F.TE-ER The Event Reporting TE shall have the ability to force a peer to 

issue a message to the users and peers specified in the Event 

Report Request (ER-R) whenever the peer executes one of the 

verbs specified in the ER-R. 

22 F.SEC The Security TE shall have the ability to 

a. Encrypt/decrypt  

i. A resource using a symmetric key 

ii. A key using an asymmetric key (by CoSec) 

b. Create new credentials and manage certificates 

c. Generate symmetric keys  

Store confidential information e.g. licenses and keys in the secure 

repository 

Moreover, it shall interface CoSec to achieve 

a. Generation of asymmetric key pairs 

b. Management of group signature scheme 

c. Management of Identity Based Encryption Schemes 

d. Management of Attribute Based Encryption Schemes 

e. Management of pseudonyms 

 



 
  

 

D3.2 System architecture Page 83 of 175 

4.15 CoNet Security 

In this section we provide a preliminary description of security and privacy issues that are of concern to 

CoNet. This section only describes security/privacy assets, threats and objectives. Functional 

requirements will be included in the next deliverable. As far as concerns CoNet security, we plan to 

implement functionalities that make it possible to accomplish the security objectives. As far as concerns 

CoNet privacy, we currently plan only to identify privacy objectives and to devise a CoNet architecture 

that does not prevent the implementation of the necessary privacy preserving mechanisms. 

We stress that CoNet security and privacy mechanisms are completely decoupled from the mechanisms 

adopted at the middleware level (CoMid). 

From a high-level point of view, the CoNet security and privacy assets to protect are, respectively: 

- Service integrity, i.e. access to valid named-resources 

- Producer/user anonymity 

 

in cases where: 

- Infrastructure may not trust users; 

- Users may not trust infrastructure; 

- Nodes of infrastructure may not trust each other. 

 

We observe that, at least currently, we do not plan to use CoNet to support confidentiality. The 

rationale for this choice is on the one hand, that confidentiality is mostly an end-to-end issue, on the 

other, that CoMid already provides confidentiality support. The final decision on this issue will be 

described in future deliverables. 

In the following sub-sections we describe the security and privacy assets, threats and objectives 

summarized in the table below. 

Table 6 – CoNet security and privacy assets, threats and objectives 

(security asset 1.1) Integrity of name-system routing entries 

(security asset 1.2) Integrity of the name-system responses 

(security asset 2.1) Integrity of named-data 

(security asset 2.2) Originality of named-data 

(privacy asset 1.1) Anonymity of the producer of named-data 

(privacy asset 1.2) Anonymity of a user that requests named-data 

(security threat 1.1) An adversary has the possibility of remote accessing the 

routing database of the name-system-node 

(security threat 1.2) An adversary may intercept and then forward packets of a 



 
  

 

D3.2 System architecture Page 84 of 175 

communication occurring between a node (border and end-

node) and the name-system-node 

(security threat 2.1) An adversary may generate fake version of named-data 

(security threat 2.2) An adversary may intercept, alter and then forward named-

data 

(privacy threat 1.1) The behaviour of a user/producer may be monitored and 

profiled by overhearing CoNet packets. The overhearing 

could occur in any part of the network, with the exclusion of 

the local access network (e.g., ADSL link, WLAN, etc.), which 

is trusted by the user 

(security objective 1.1) CoNet shall protect the routing database of the name-system 

from unauthorized modifications coming from remote users, 

i.e. Insert, modify and delete entries 

(security objective 1.2) CoNet shall avoid the name-system impersonification and the 

altering of name-system responses 

(security objective 2.1) CoNet shall avoid the caching of fake version of named-data 

(privacy objective 1.1) CoNet should not prevent to implement mechanisms that 

make possible to verify integrity and originality of named-

data without disclosing the identity of the user that has 

produced the named-data 

(privacy objective 1.2) CoNet should not prevent the implementation of 

mechanisms that make it possible to deliver named-data 

without disclosing to intermediate un-trusted nodes the 

identity or network location of the requesting user 

 

4.15.1 CoNet Service Integrity 

In a content-centric network, access to a named-resource could be jeopardized by several kinds of 

malicious attacks, targeted at different networking mechanisms. In order to identify the possible 

security threats we adopt an architecture-centric approach, looking for types of attacks against the 

functionalities of the CoNet architecture. Obviously, the security threat model will be extended 

appropriately during the project lifetime. 

4.15.1.1 Routing-by-name 

CoNet routing-by-name is mainly carried out by means of the lookup-and-cache approach described in 

D5.1 and in this deliverable (see 7.1). Briefly, the name-based routing table of end-nodes and border-

nodes is used as a routing-cache. If a routing entry is missing, the node lookups the routing entry on a 

name-system. 

To preserve the routing-by-name mechanism, the security assets we need to protect are: 

- (security asset 1.1) Integrity of name-system routing entries 

- (security asset 1.2) Integrity of the name-system responses 



 
  

 

D3.2 System architecture Page 85 of 175 

 

We assume that an adversary may:  

- (security threat 1.1) have the possibility of remote accessing the routing database of the name-

system 

- (security threat 1.2) intercept and then forward packets of a communication occurring between 

a node (border and end-node) and the name-system 

We further assume that remote access to the name-system is always guaranteed, i.e. that there are 

mechanisms in place to prevent DoS attacks, for instance the saturation of the name-system with a huge 

number of requests. 

To preserve assets against these threats, CoNet security objectives shall include the ability to: 

- (security objective 1.1) protect the routing database of the name-system from unauthorized 

modifications (insert, change, delete entries) by remote users,  

- (security objective 1.2) avoid impersonification of the name-system and the altering of name-

system responses 

4.15.1.2 In-network Caching 

A fundamental feature of the CoNet is the ability of network nodes to cache chunks of named-data, i.e. 

named-data CIUs. Any border or internal node can cache chunks of named-data that it is forwarding, 

and can replay a cached chunk of named-data on request. This possibility offers undeniable 

performance benefits. However, it creates the risk that fake versions of named-data could prevent the 

retrieval of the original version. A fake version of named-data is some named-data with the same name 

(NID) as the original named-data, but different content. If an intermediate node (border or internal) has 

unintentionally cached a fake version of named-data, it will respond to requests for the original named-

data with the fake version, preventing end-nodes that make such requests from downloading the 

original data.  

To preserve the possibility of retrieving the original version of named-data, the security assets we need 

to protect are: 

- (security asset 2.1) Integrity of named-data; i.e. the certainty that named-data have not been 

modified since they were made available by the author 

- (security asset 2.2) Originality of named-data; i.e. the certainty that named-data have been 

created by the original author, that is the user with the right to use the name (e.g. 

www.cnn.com) of the named-data.  

An adversary may:  

- (security threat 2.1) Generate a fake version of named-data 

- (security threat 2.2) Intercept, alter and then forward original named-data 

 



 
  

 

D3.2 System architecture Page 86 of 175 

However, for the scope of this work, we assume that cached named-data cannot be manipulated, i.e. 

the cache storage unit is trusted. 

In order to preserve in-network caching assets against these threats, CoNet security objectives shall 

include the ability to: 

- (security objective 2.1) avoid caching of fake versions of named-data 

4.15.2 CoNet Producer/User Privacy 

CoNet content-centric networking paradigm poses new challenges for protecting user privacy. For 

instance, protecting the integrity and originality of cached named-data might lead to disclosure of the 

identity of the author. Similarly, the source-routing approach used by CoNet to deliver named-data to a 

requesting user might disclose the network location and thus the identity of the requesting user. This 

said, the privacy assets we should protect are: 

- (privacy asset 1.1) the anonymity of the author of named-data  

- (privacy asset 1.2) the anonymity of the user who requests the named-data  

 

There are several possible threats to these assets:  

- (privacy threat 1.1) an adversary could monitor and profile the behaviour of a user by sniffing 

CoNet packets.  

 

At the time of writing, we assume that packet payload is encrypted at the CoMid level and is therefore 

not accessible to an adversary. However, this assumption could be removed in future deliverables. To 

preserve privacy assets against this threat, the CoNet architecture SHOULD not prevent the possibility of 

implementing privacy preserving mechanisms. The objectives of such mechanisms would be: 

- (privacy objective 1.1) to verify the integrity and originality of named-data without disclosing the 

identity of the user that produced the data 

- (privacy objective 1.2) to deliver named-data without disclosing the identity or the network 

location of the requesting user to intermediate un-trusted nodes 

4.16 Scalability 

Technical testing of the CONVERGENCE architecture will take place in special test-beds with restrictions 

on numbers of users, volumes of content and transaction rates. The scalability of the CONVERGENCE 

architecture can be defined as the possibility: 

1) of deploying the system architecture in real life scenarios, under a predictable initial load 

2) of further expanding the system as additional users and content are added in the future. 

 



 
  

 

D3.2 System architecture Page 87 of 175 

In this section we describe the conceptual framework we will use to assess the scalability of the 

CONVERGENCE architecture, first with reference to the CoMid and then to the CoNet. 

4.16.1 CoMid scalability 

CONVERGENCE content is described using Metadata included in VDIs. To be scalable, the CoMid has to 

allow an arbitrarily high number of users (all users of the current and the future Internet) to publish and 

retrieve an arbitrarily high number of VDIs. Given that publish-subscribe operations in the CoMid are 

implemented in a distributed way, by a set of CONVERGENCE peers, we can characterize the scalability 

of CONVERGENCE in terms of relations between the input load, and the capacity of the CONVERGENCE 

system, assuming the need to meet a set of performance targets. The input load can be characterized 

by: i) number of published VDIs; ii) number of active subscriptions; iii) overall rates of publication, 

subscription and search operations (e.g. the product of the number of users and the 

publication/subscription/search rate for each user). In addition we need to quantify the volume of 

“indexable” metadata contained in each VDI and the complexity of the queries used in search and 

subscribes operations. The capacity requirements for the CONVERGENCE system and for CONVERGENCE 

peers are given by: i) the number of peers; ii) the storage capacity of each peer; iii) the processing 

capacity of each peer; iv) inter-peer communication load (i.e. the messages that the peers need to 

exchange to support user requests). Finally, it is possible to set system performance targets in terms of: 

i) lookup time for search operations; ii) relevance of search results and notifications. In this conceptual 

model, CONVERGENCE may be considered as scalable if capacity requirements for the system are a 

linear or low order polynomial function of input load.  

In practice, it may not be possible to achieve a full quantitative analysis of CONVERGENCE scalability. In 

what follows we will therefore adopt a qualitative approach.  

The semantic overlay implements load-critical operations in the CoMid, including searching, indexing in 

pub/sub tables and circulation of metadata and is designed with scalability in mind. The design takes 

account of a number of critical conditions. 

• High network dynamism. Peers can join and leave the network at any time. The search 

procedure has to perform normally, even if a peer fails. 

• High content dynamism. Content stored in the network is highly dynamic due to frequent 

publications. and updates of previously published contents 

• Large search space. Search and subscribe operations need the ability to find any publication on 

any peer in the CONVERGENCE network.  

Given the need for scalability the design should have the following goals (see also [39]). 



 
  

 

D3.2 System architecture Page 88 of 175 

• The Semantic overlay must be decentralized: there should be no central entity controlling the 

search procedure. This avoids single-point-of-failure issues and ensures load-balancing between 

the peers that take part in the procedure. 

• Semantic overlay must be efficient: peer resources and network bandwidth should be used with 

moderation. 

• The Semantic overlay must be scalable: efficiency should be maintained when the volume of 

published content increases 

• Semantic overlay must be fault-resilient: if a peer fails, search should be carried out normally. 

• Semantic overlay must be load-balancing: the resources used for search should be distributed 

across all the peers of the network. 

To minimize the search space, search is restricted to publications of a single semantic type, and 

signalling is propagated only to a subset of the overlay (the relevant fractal). However, CONVERGENCE 

also needs to address an additional requirement: 

• Semantic overlay must be flexible: search queries provided by the user should be treated in a 

semantic manner, ensuring that results match the ‘meaning’ of the query. 

In other words, CONVEGENCE has to deal with highly heterogeneous metadata based on different 

vocabularies and with ambiguous and inaccurate descriptions. 

These requirements directly affect scalability: query expansion and the efficiency of SPARQL query 

engines efficiency needs to be evaluated in terms of their impact on the overall scalability of the 

CONVERGENCE system. 

4.16.2 CoNet scalability 

As far as concerns CONVERGENCE’S content-centric aspects, the CoNet has to scale up to the scale of 

current Internet, i.e. it should be capable of replacing the storage and retrieval capabilities of the 

current Internet.  

To assess the scalability of CoNet we can use a similar conceptual framework to the one we used to 

analyze the CONVERGENCE publish-subscribe model. This means we need to define: i) the input load, ii) 

capacity requirements for the system, and iii) performance targets and characterize the relations 

between them. Here, the input load is defined by i) the number of different addressable items; ii) the 

number of Principal Identifiers (see sections 4.9 and 7.1.3) in the CoNet; and iii) the rate of user content 

requests. System capacity is defined in terms of i) storage and processing requirements for different 

types of CoNet nodes, ii) inter-node traffic to be supported. Performance targets will include i) content 

download rates (for non real-time content download); and ii) loss and delay (for real-time content 



 
  

 

D3.2 System architecture Page 89 of 175 

transfer). As in the case of publish-subscribe, it is probably not feasible to analyze the scalability of the 

system in quantitative terms. We will therefore adopt a qualitative approach. Some details of our 

analysis will be included in the sections of this report dedicated to the design of the CoNet (e.g. Name-

based routing: lookup-and-cache). Other details will be reported in future deliverables. 



 
  

 

D3.2 System architecture Page 90 of 175 

5 Overview of Application Level 

 

The Application level provides the interface between users and CONVERGENCE and is the top level of 

CONVERGENCE from the user point of view. Applications will help users to perform tasks, such as 

searching, browsing and downloading VDIs. This requires that applications should be integrated with the 

CONVERGENCE middleware. In this section, therefore, we will provide an overview of middleware 

interactions with tools and application.  

In general, CONVERGENCE applications access CONVERGENCE through one of three mechanisms. 

o For middleware operations that are performed remotely, they use Elementary Services. 

Typical examples of such operations include identification, packaging and delivery of 

content. 

o To execute a pre-specified chain of Elementary Services, they use aggregated services. 

o To call a chain of engines that execute locally, they use a client Orchestrator to monitor 

the status of each engine and synchronize individual procedures. 

CONVERGENCE will support two kinds of applications: Java standalone applications and web 

applications. While the former can make direct web service calls to access an elementary or an 

aggregated service, or to execute a local orchestration, the latter require an HTTP proxy that performs 

the necessary operations. In detail, when a browser-based (web) application makes request, this request 

is redirected to the proxy, which then decides whether it should make a CoNet call (e.g. in case of a 

requests for a middleware operation) or a plain TCP/IP based call (e.g. when it is necessary to fetch a 

web page). If an application requires streaming (e.g. the LMU podcast application or the FMSH video 

application) it relies on CoNet. In this case, the HTTP proxy will filter the client request and convert it to 

a call to CoNet. Finally, if the client side of the application (i.e. the browser) needs to make a local call to 

an orchestrator, it is passed through the HTTP proxy, as described in detail in deliverable D7.1. [40] 

The Application level is split into two sub-levels: a Tools sub-level and a User Applications sub-level (see 

Figure 22). The Tools sub-level contains functional components that combine a subset of CoMid 

functionalities and can be reused by many applications but not all of them. Typical tools might include a 

VDI editor for creating new VDIs, a VDI search tool, a VDI browser tool and a VDI notification tool. In any 

given application, the Tools Layer is responsible for the interaction with CoMid; the Application level 

provides the interface to the user and visualizes search results in the format that best meets her 

requirements. This means that, for example, Photo VDIs or Video VDIs may appear differently in 

different applications. 



 
  

 

D3.2 System architecture Page 91 of 175 

By interacting with the CDS, tools can help the user to describe her resources. The CDS contains all the 

concepts available in the CONVERGENCE framework. Applications provide an interface to the service 

that users can exploit when they wish to describe a resource or define a set of search criteria.  

 

Application Level

Product 
Search

Photos 
Search

Video 
Search

User Applications sub-level 

Tools sub-level 
Search VDI tool

Middleware Level

Product VDI 
Creation

Create VDI 
tool

Request Content, Search Content, Package 
Content, Store Content, Deliver Content Identify Content,  Describe Content, 

Create Content, Package Content, 
Store Content, Deliver Content

 

Figure 22 - Interaction of Tools and Applications sub-levels with CoMid 



 
  

 

D3.2 System architecture Page 92 of 175 

6 Technical specification of CONVERGENCE Middleware 

(CoMid) 

6.1 CoMid overview 

The CoMid architecture is based on concepts developed in the MPEG-M (MPEG extensible Middleware) 

standard, an extension of the former MXM standard. CoMid functionality are implemented using 

Elementary Services in MPEG-M [see working drafts of ISO/IEC 23006-4 at 

http://mpeg.chiariglione.org/working_documents.htm#MPEG-M], and, when MPEG-M does not provide 

the necessary functionality, by new CONVERGENCE specific Elementary Services. 

 

CoMid is based on a DDD (Describe, Discover, Distribute) paradigm. Its main purpose is to offer a set of 

standardized building blocks, APIs and protocols to describe, discover and distribute resources (VDIs) on 

the basis of “what” (metadata) they contain and offer. Higher-level Applications and Tools are built by 

assembling CoMid blocks into custom software, manipulated by users. 

6.1.1 CoMid functionality 

6.1.1.1 Describe functionality 

Whenever a user produces a piece of multimedia content, or wants to market a good or service which is 

going to be governed and mediated through the CONVERGENCE system, the resource has to be 

described in a VDI. The VDI is a structured repository for all metadata and context information 

describing a specific resource. The CoMid “Describe” functionality is used to: i) access ontologies and 

directory services needed to tag resources; ii) create, identify and parse VDIs; iii) generate licensing 

information and contractual obligations which accompany the resource. 

6.1.1.2 Discover functionality 

Discovery of resources is crucial in large distributed networks. CoMid supports semantic searches over 

the VDI space (by semantic search, we mean a structured and multi-criteria search over the semantic 

part of VDIs. The result is a ranked list of resources, matching the search criteria). The CoMid Discover 

functionality uses semantic criteria to search for VDIs and to manage the topology of the VDI space, 

making it possible to perform queries efficiently. 

6.1.1.3 Distribute functionalities 

Users interact with the CONVERGENCE system through an asynchronous, publish/subscribe paradigm. 

The CoMid Distribute functionality implements pub/sub abstraction end-points towards the user, 

supports unpublish operations and implements content-based subscription to resources. 

 



 
  

 

D3.2 System architecture Page 93 of 175 

6.1.2 Elementary Services, Protocol Engines and Technology Engines 

The CoMid is organized around the concept of Elementary Services (ESs) and implemented as Protocol 

Engines (PEs). Protocol Engines may call Technology Engines (TEs) to perform specific actions. PEs and 

TEs are assembled in a Service Oriented Architecture (SOA), based on the MPEG-M standard. Some of 

the Services needed by CoMid are directly available in the MPEG-M standard. Others will have to be 

specifically implemented within the CONVERGENCE framework. These services constitute a suite of 

building blocks facilitating the implementation of CONVERGENCE value chains (value chains are defined 

in MPEG-M as part of a business scenario). In such value chains, all devices are based on the same set of 

technologies, which they access via CoMid. These will include but not be limited to technologies 

standardized by MPEG. The use of a common set of technologies guarantees that all devices along the 

value chain can interoperate. 

 

The section on Protocol describes the set of PEs implementing ESs in CoMid and the way they map onto 

functional areas of the CONVERGENCE middleware. 

 

CoMid also introduces the concept of Entities, meaning the objects on which ESs act: VDIs (equivalent to 

Content in MPEG-M nomenclature), Devices, Events, Groups, Licences/Contracts, Services, and Users. By 

combining ESs and Entities, it is possible to describe a series of Operations. These are the basic building 

blocks in the CoMid SOA.  

 

These Operations define a corresponding set of protocols and APIs that enable any user of the 

CONVERGENCE system to access those services in an interoperable fashion.  

 

6.2 Orchestration and Aggregation 

In CONVERGENCE, applications communicate with the middleware either by calling a protocol engine, 

which processes a request and calls technology engines to fulfil the request, or by calling a technology 

engine directly (as may occur when the technology engine is running on the local client device). Figure 

23 shows a typical example where an application calls three protocol engines, PE1, PE2 and PE3 which in 

turn call remote technology engines and another technology engine which runs locally on the client 

device. 

Using the middleware may require various remote calls and coordination of the results (see again Figure 

23). This means that the work of a CONVERGENCE application developer may be rather complex. The 

same applies to the protocol engine provider who will need to coordinate technology engines. 

CONVERGENCE will take advantage of the inherently, clear organization of protocol and technology 

engines, to support automatic execution of chains of engines. This will facilitate the work of the 

applications/middleware developer. To this end, we introduce the aggregator and the orchestrator, two 

middleware components that coordinate the execution of the atomic operations defined by the 

protocol and the technology engines. 



 
  

 

D3.2 System architecture Page 94 of 175 

APPLICATION

PE1 PE2 PE3

TE1 TE2 TE3 TE4 TE5

 

Figure 23 - Application Call to CoMid 

Figure 24 illustrates how such an approach could be applied in action. Instead of calling each protocol 

engine separately, the application directly calls an aggregation of protocol engines, which exposes a 

new, (more) complex protocol, and performs the synchronization of the different engines.  

Instead of calling and coordinating calls to various technology engines, the protocol engine relies on the 

orchestrator, which exposes a custom interface and relieves the protocol engine of the coordination of 

the calls. 

The orchestrator and the aggregator coordinate and execute a chain of engines transparently. There are 

thus two ways of implementing them with the platform. The first is to develop each 

aggregation/orchestration separately, defining the interfaces through which they can be called and 

programming them in the same way as any other engine. The second is to implement the two 

components with workflow technology. More specifically we can represent chains of engines by BPMN 

(Business Process Model and Notation) workflows
4
 . We can then use these workflows to dynamically 

create aggregations or orchestrations of engines. Given that workflows can incorporate executable 

processes, we can create BPMN processes which automatically make the necessary calls to the protocol 

and the technology engines, from within a general workflow environment. 

                                                           
4 MPEG-M Part 5 [32] defines the workflow for the chain of protocol engines involved in Service Aggregation 



 
  

 

D3.2 System architecture Page 95 of 175 

APPLICATION

PE1 PE2 PE3

TE1 TE2 TE3 TE4 TE5

Aggregation

Orchestration
Orchestration

 

Figure 24 - Aggregation and Orchestration in CoMid 

At the time of writing, we are considering both orchestration solutions. On the one hand, we are 

examining APIs for state of the art workflow engines (the second solution). On the other we are studying 

BPMN v2.0 as it is used to support service aggregation in MPEG-M Part 5 (the first solution) and have 

designed a general workflow environment that takes as input a BPMN v2.0 executable process (using a 

script task for each call to a method exposed by the technology engine), executes the process and 

returns the result to the caller. 

6.3 Protocol engines 

Protocol Engines used by CONVERGENCE (in italics engines extended by CONVERGENCE, in bold engines 

specified by CONVERGENCE) 

Operation Entity Definition 

Authenticate Content Allows a user to check the authenticity of a certain VDI on his/her device, by 

using the VDI itself and its digital signature. If the digital signature is not 

embedded inside the VDI itself, it has to be provided separately. 

 Device Enables a user or any client application to authenticate the device where it is 

running. This way, the owner of the content to be used by the application 

can be sure that the device is trusted. 

 User Allows the client to confirm a user’s identity. This service can work with users 

belonging to different domains using a Single-Sign-On (SSO) mechanism. 



 
  

 

D3.2 System architecture Page 96 of 175 

Create Content Enables the creation of a Versatile Digital Item, by providing the data it 

contains, such as resources, descriptions, licenses etc. 

 License Enables the creation of a license, by providing the corresponding information 

expressed in a machine readable way. CONVERGENCE will support the MPEG-

21 Rights Expression Language (REL) along possible extensions to be defined in 

D4.2. 

Deliver Content Enables the client to request the delivery of a specified VDI according to terms 

and conditions, specified in a license. The Deliver Content service provider 

does not necessarily have to be the sender or the receiver of the content; it is 

just responsible for performing the transaction between the two parties 

Describe Content Enables a user to generate, provide and retrieve descriptions of VDI content. 

The service provides  

1. A protocol for setting the description of a VDI 

2. A protocol for getting the description of a VDI  

3. A protocol that facilitates the generation of semantic descriptions of VDI 

contents by providing entities from ontology models descriptions can be 

mapped to.  

The Search Content Elementary Service uses these descriptions to perform 

search. 

Identify Content Enables a User to obtain an identifier for a VDI or any of its components.  

 User Enables a User to obtain an identifier. The identifier is stored in the service 

provider, so that it can later be used for retrieving it by a third party (e.g. an 

application) using the user’s credentials 

Inject Content Makes a VDI discoverable via semantic search operations. The operation 

performed by users or automatically by the system when a new VDI is 

published.  

Package Content Prepares a VDI for delivery, viz. creates a file out of the VDI, or a stream 

consisted of VDI fragments and binds it to the transport protocol 

Present Content Enables a user to set a style for the presentation of a VDI. The service 

provider will apply the style on the VDI and return the corresponding 

formatted document. 

Process Content Enables a user to modify the contents of a VDI. The result will be a new VDI, 

following the semantics of the update VDI (i.e. keeping the same sequence 

identifier as its predecessor). 

 License Enables a user to create a license, based on an already existing one. The new 

license may refer to different resources, different principals or be based on its 

predecessor template. 

Request Content Enables a user to access a VDI. 

Request Event Enables a user to ask for an Event Report Request associated with a given VDI, 

or the Event Reports associated with a given Event Report Request. 

Revoke Content Enables a user to unpublish/unsubscribe VDIs 

Search Content Enables a user to perform search on VDIs published in CONVERGENCE. 

The query may use the following classes of search criteria: 

• Unstructured criteria: free text description. 



 
  

 

D3.2 System architecture Page 97 of 175 

• Semi-structured criteria: property-value pairs where property is 

based on a model and value is free text. 

• Structured criteria: property-value pairs where property and value 

are both based on a model. 

In the latter two cases, the user can use the Describe Content Elementary 

Service to request entities of existing models and construct the criteria for the 

query. 

Store Content Allows for the transfer and the storage of a VDI in a local or remote device. 

 Event Enables a user to store an Event Report Request or an Event Report that may 

occur on a device. 

 

See section 4.3 of deliverable D5.1 for complete details. 

6.4 CDS TE 

6.4.1 General description 

The Community Dictionary Service Technology Engine (CDS TE) provides semantic services to the 

CONVERGENCE middleware. This section presents the main functional components of the CDS 

architecture. These components provide the following functionalities: 

• Manage ontologies and dictionaries 

• Perform queries against CDS’s knowledge base for 

o Exploring ontology entities 

o Expanding semantic descriptions 

o Expanding semantic queries 

6.4.2 Main components and their interaction 

The following Figure 25 depicts the architecture of the CDS TE. 



 
  

 

D3.2 System architecture Page 98 of 175 

 

Figure 25 - Architecture of the CDS TE 

The following table details the function of the layers depicted in the figure. 

Components  Function  

Access Layer The access layer involves interfaces that exploit knowledge maintained by the 
CDS 

• Semantic Expander: this interface defines methods for building 
materialized semantic descriptions, for building semantically equivalent 
semantic descriptions and for building semantically equivalent queries 

• Entity Explorer: this interface defines methods for querying the repository 
for ontology entities and building a result set 

Management Layer The management layer involves interfaces that manage the ontologies and the 
dictionaries that CDS maintains. 

• Knowledge Manager: this interface defines methods for loading, 
unloading and retrieving ontologies and dictionaries from CDS knowledge 
base. 

Storage and 
Inference Layer 

The storage and inference layer involves interfaces for managing the knowledge 



 
  

 

D3.2 System architecture Page 99 of 175 

(SaIL) repository and reasoning over it. 

• Repository Manager: this interface abstracts the storage format used for 
the knowledge base and defines methods for querying it, as well as 
adding and removing statements. 

• Inference Engine: this interface provides reasoning support over the 
knowledge base. It defines methods for adding/materializing and 
removing statements from the knowledge base and for checking the 
consistency of it. 

Communication 
(Comm) Layer 

The communication layer involves interfaces for the communication between CDS 
servers. 

• Communication Manager: this interface defines methods for fetching 
ontologies and dictionaries from other CDS servers. It also provides an 
entry point for other CDS servers to access it. 

 

6.5 CoNet TE 

The CoNet Technology engine provides the CONVERGENCE Middleware with access to the features of 

the CoNet, based on Content Centric Networking. As described in section 3, the CoNet is a part of the 

Computing Platform level. The internals of the CoNet are described in section 7.1. In this section we 

describe the API offered by the CoNet technology engine to the other elements of the CONVERGENCE 

Middleware. 

6.5.1 Main components and their interaction 

The CoNet technology engine is a Java package that implements the functionality described by the 

CoNet API. The Java package also includes the classes that represent the CoNet identifiers (NID, LID, see 

section Network).  

6.6 Digital Item TE 

The DI Engine interface defines methods for operating on ISO/IEC 21000-2 Digital Item Declaration (DID) 

data structures. From classes implementing the DI Engine interface it is possible to obtain instances of 

classes performing the main functionalities of this MXM Engine: 

• Classes to create Digital Items 

• Classes to edit a Digital Item 

• Classes to access data contained in a Digital Item 



 
  

 

D3.2 System architecture Page 100 of 175 

6.6.1 Main Components and their Interaction 

The following table details the main components of the Digital Item Engine and their functions. 

 

Components  Function  

DI Creation Digital Item creation involves the following interfaces: 

• DICreator: an interface defining methods to create a Digital Item Declaration 

and to add a digital signature to it 

• ItemCreator: an interface defining methods to create a didl:Item after setting all 

its main properties 

• DescriptorCreator: an interface defining methods to create a didl:Descriptor 

after setting all its main properties 

• ComponentCreator: an interface defining methods to create a didl:Component 

after setting all its main properties 

• ResourceCreator: an interface for creating a didl:Resource after setting all its 

main properties 

DI Editing Digital Item editing involves the following interfaces: 

• DIEditor: an interface defining methods to edit a Digital Item 

• ItemEditor: an interface defining methods to edit a didl:Item. 

DI Access Digital Item parsing involves the following interfaces: 

• DIParser: an interface defining methods to parse a Digital Item and retrieve the 

information contained unit. 

 

6.7 Event Report TE 

The Event Report Technology Engine (TE) defines methods for operating over ISO/IEC 21000-15 Event 

Reporting data structures. It will implement methods to perform the following operations: 

• Create Event Report Requests (ER-R) 

• Add / modify data to / from an ER-R 

• Parse and Retrieve data from an ER-R 



 
  

 

D3.2 System architecture Page 101 of 175 

• Create Event Reports (ER) 

• Notify users with ERs 

• Parse and Retrieve data from an ER 

6.7.1 Event Report Request (ER-R) message 

The Event Report Request message is composed of three main sections as shown in the table below. 

Each main section consists of several parts which are described next.  

Main 

Section 

 

Content 

 

ER-R 

Descriptor 

 

ER-R Identifiers – uniquely identifying an ERR 

ER-R Lifetime – provides information about the lifetime of the ERR 

ER-R History – provides an audit trail of the ERR. 

ER-R Priority – provides information on the priority of an ER. 

ER 

Descriptor 

 

ER Identifier – providing an identifier to be used in the ER(s) created based on this ER-R. 

ER Access control information – provides information about which Peers and/or Users 

are allowed to access the ER and about the mechanism these access rules are enforced. 

ER Fields – provides information about the fields to be contained in the ER. 

ER Formats – The syntax and semantics of these fields. 

ER Delivery Attributes – provides information such as the intended recipient(s) of the ER 

and the delivery mechanism. 

Event 

Conditions 

Descriptor 

 

Time-based Conditions 

Condition(s) on User operations on a VDI 

Condition(s) on other operations or environment 

Table 7 – Event Report Request message structure 

6.7.2 Event Report (ER) message 

 
The basic model of Event Reporting indicates that Events that need to be reported are represented as an 

Event Report specified by an Event Report Request. An Event Report message is composed of four main 

sections as shown in the table below. The Event Report is automatically generated by the Event Report 

TE as specified in the associated Event Report Request.  

 

Main 

Section 

 

Content 

 

ER ER Identifier(s) – uniquely identifies the ER 



 
  

 

D3.2 System architecture Page 102 of 175 

Descriptor 

 

ER Format – provides information about the format in which the ER Data is delivered. 

ER Access control information – provides information about which Peers and/or Users 

are allowed to access the ER and about the mechanism these access rules are enforced. 

ER Status – Provides information on whether the Peer was able to properly generate the 

ER 

ER History – provides an audit trail of the ER 

ER Priority – provides information on the priority of an ER 

ER Source  The information about the original source of ER-R that triggers the Report. 

ER Data Report Data which is needed in the associated ERR. 

 

Embedded 

ER-R 

 

The other ER-R which related with this ER. 

Table 8 -Event Report message structure 

6.7.3 Main components and their interaction 

The following Figure 26 depicts the architecture of the Event Report TE based on MPEG-21 Event 

Reporting. 

 
 

Figure 26 - Architecture of Event Report TE 

 



 
  

 

D3.2 System architecture Page 103 of 175 

An Event Report Request is created by the Event Report Request Creator component which cooperates 

with the application logic and/or User action using user interface (GUI).  

Upon receiving an ER-R message, the Event Report Request Handler component parses the Event 

Reporting message and monitors an Event occurrence. Upon fulfilment of a set of events, Event Reports 

are generated by the ER Builder subcomponent and are sent to the recipients specified in associated 

Event Report Requests.  

After receiving an ER message, the Event Report Handler component parses that message, then displays 

and stores information contained in the message. 

Figure 27 shows the detailed structure of the Event Report Request Handler component and describes 

the interaction among its five elements on receiving an Event Report Request.  

 

Figure 27 - Detailed structure of the Event Report Request Handler 

 

The elements are:  

 

ER-R Receiver – receives an ER-R from another Peer; 



 
  

 

D3.2 System architecture Page 104 of 175 

ER-R Parser – interprets ER-Rs; 

Event Watchdog – monitors Events and detects when ER-R conditions have been fulfilled; 

ER Builder – assembles reportable Event data and creates an Event Report; 

Event Report Dispatcher – takes an Event Report and sending it to designated recipient Peers. 

6.8 Media Framework TE 

The Media Framework TE is a high level engine, grouping several media specific engines (e.g. Video, 

Image, Audio and Graphics Engines). Each exposes APIs to create (encode) and access (decode) their 

respective elementary streams. The Media Framework TE also implements common functionalities 

(independent of media type) such as resource loading and saving. The Media Framework TE has two 

interfaces: 

• An interface for accessing content (Access) 

• An interface for creating content (called Creation) 

A typical implementation of the Access interface of the Media Framework TE loads a resource, 

demultiplexes it, checks the type of the elementary streams within the resource and calls the associated 

elementary stream access engines. 

A typical implementation of the Creation interface of the Media Framework TE calls the associated 

elementary stream creation engines, initializes them with encoding parameters and saves the 

multiplexed resource. 

6.8.1 Main components and their interaction 

The main components of the Engine are reported in the following table. 

Components Function 

Creation Creates and handles a given resource. 

Access  Consumes a given resource (e.g. by rendering it on a visual panel 

6.9 Match TE 

6.9.1 General description 

The Match Technology Engine (TE) is responsible for performing matches between subscriptions and 

publications. To support the CONVERGENCE content-based publish/subscribe paradigm, matches are 

based on the descriptions of content, as detailed in previous sections. The Match TE identifies Semantic 

descriptors within the VDI structure and fires the corresponding parser. 



 
  

 

D3.2 System architecture Page 105 of 175 

The Match TE maintains separate repositories to handle the descriptors that are to be matched, 

depending on whether they come from subscriptions or publications. 

6.9.2 Main components and their interaction 

The Match TE is used by the CoMid to match subscriptions and publications whenever it receives a 

publication or a subscription (see Figure 28). 

On receiving a subscription, the Subscription Manager is called. The Subscription Manager adds the 

subscription to the subscription tables it maintains. These tables index subscriptions according to their 

semantic type, i.e. according to the fractals they participate in (for more info see section on Semantic). 

To store the subscription, it calls the Repository Manager. Finally, it calls the Matching Engine to check 

the subscription for matching publications. The Subscription Manager also controls the deletion of 

subscriptions from subscription tables and the relevant database when they expire. 

 

Figure 28 - Architecture of the Match TE 

On receiving a publication, the Publication Manager is called. The Publication Manager adds the 

publication to the publication tables it maintains, which function in the same way as the tables for the 

Subscription Manager. Finally, it calls the Matching engine to check the publication for matching 

subscriptions. The Publication Manager also controls the deletion of publications when they expire, and 

the revocation of publications from publication tables and the relevant database. 



 
  

 

D3.2 System architecture Page 106 of 175 

As mentioned earlier, subscriptions and publications are stored in database. For this task the Repository 

Manager is called. The Repository Manager maintains databases for the storage of publications and 

subscriptions, and is also responsible for querying the relevant databases whenever necessary. 

Finally, the Matching Engine performs the match operation and returns the results. On receiving a 

request to check for matches of a subscription, the Matching Engine retrieves the relevant database 

from the Publication Manager, checks the query and forwards it to the Repository Manager. It then 

returns the resulting matches to the system. 

On receiving a request to check for matches of a publication against existing subscriptions, the Matching 

Engine retrieves the relevant database of subscriptions from the Subscription Manager and checks each 

subscription against the newly received publication. 

6.10 Metadata TE 

The Metadata TE interface defines methods for operating over metadata structures. Classes 

implementing the Metadata TE interface act as factories creating instances of classes performing the 

following functionalities: 

• Create metadata structures, by means of the MetadataCreationEngine 

• Access data contained in metadata structures, by means of MetadataAccessEngine 

6.10.1 Main Components and their Interaction 

The main components of the Engine are reported in the following table. 

Components  Function  

Metadata 

creation 

Creating metadata structures involves the following interfaces: 

• MetadataCreator: a super interface defining a basic method to create a 

metadata structure; in the future CONVERGENCE will extend this interface 

• GenericMetadataCreator: an interface defining methods to create generic 

metadata structures in any format, depending on the specific implementation of 

the Metadata Engine of choice. 

• Mpeg7Creator: an interface defining methods to create MPEG-7 metadata 

structures. 

• AbstractCreator: an interface defining methods to create an mpeg7:Abstract 

element 

• CreationCoordinatesCreator: an interface defining methods to create an 

mpeg7:CreationCoordinates element 

• CreationDescriptionCreator: an interface defining methods to create an 

mpeg7:CreationDescription element 

• CreatorCreator: an interface defining methods to create an mpeg7:Creator 



 
  

 

D3.2 System architecture Page 107 of 175 

element 

• GenreCreator: an interface defining methods to create an mpeg7:Genre 

element 

• ParentalGuidanceCreator: an interface defining methods to create an 

mpeg7:Creator element 

• TitleMediaCreator: an interface defining methods to create an mpeg7:Creator 

element 

MetadataAccess Accessing metadata structures involves the following interfaces: 

• MetadataParser: a super interface to be further extended, defining a basic 

method to create a metadata structure 

• GenericMetadataParser: an interface defining methods to parse a generic 

metadata structure in possibly any format depending on the specific 

implementation of the MetadataEngine of choice. 

• Mpeg7Parser: an interface defining methods to parse MPEG-7 metadata 

structures. 

• AbstractParser: an interface defining methods to parse an mpeg7:Abstract 

element 

• CreationCoordinatesParser: an interface defining methods to parse an 

mpeg7:CreationCoordinates element 

• CreationDescriptionParser: an interface defining methods to parse an 

mpeg7:CreationDescription element 

• CreatorParser: an interface defining methods to parse an mpeg7:Creator 

element 

• GenreParser: an interface defining methods to parse an mpeg7:Genre element 

• ParentalGuidanceParser: an interface defining methods to parse an 

mpeg7:ParentalGuidance element 

• TitleMediaCreator: an interface defining methods to parse an mpeg7:TitleMedia 

element 

 

6.11 MPEG-21 File TE 

The MPEG21 File TE interface defines methods for operating over MPEG-21 File Format files. The classes 

implementing the MPEG21File TE interface make it possible to obtain: 

• instances of classes to create an MPEG-21 file – these class instances implement the MPEG21 

FileCreator interface. 

• instances of classes to access data from an MPEG-21 file – these class instances implement the 

MPEG21 FileAccess interface. 



 
  

 

D3.2 System architecture Page 108 of 175 

6.11.1 Main Components 

The main components of the Engine are reported in the following table. 

Components Function 

MPEG21 File Creation Creating an MPEG-21 file involves the following interfaces: 

• MPEG21FileCreator: an interface defining methods to create an MPEG-21 file 

MP21 File Access Accessing an MPEG-21 file involves the following interfaces: 

• MPEG21FileAccess: an interface defining methods to access an MPEG-21 file 

6.11.2 MPEG-21 File Format 

MPEG-21 files are structured in accordance with MPEG-21 Part 9 (File Format). They use the structural 

definition of box-structured files, as defined in the ISO Base Media File Format, but not the definitions 

for time-based media. 

An MPEG-21 file stores an MPEG-21 digital item, as well as some or all of its ancillary data (such as 

images, movies, or other non-XML data). In it, a file-level meta-box is used to hold an MPEG-21 Digital 

Item Declaration (DID) and a list of attached resources (which may have local names, and may be 

located within the same file or in another file). 

6.12 Overlay TE 

The Overlay TE is responsible for distributing content to a set of peers which are interested in that type 

of content. It is used by the publish-subscribe mechanism of CONVERGENCE to diffuse publication and 

subscription VDIs to a group of peers that have already published or subscribed to content of that type. 

It has two fundamental components: the topology management component and the content 

propagation component. The topology management component is used by each peer so that it can keep 

a consistent view of the system that it needs to propagate to. The content propagation component is 

used by the peers to diffuse content to a set of target peers in the system. 

6.12.1 Main components and their interaction 

The main components of the Engine are reported in the following table. 

Components  Function  

Topology 

Management 

This component is related to the registry, as this contains the topology view of each 

peer. There two interfaces defined to serve the purpose of this component: 



 
  

 

D3.2 System architecture Page 109 of 175 

• RegistryCreator: this interface defines methods needed to register to a fractal, 

notify other fractal members of the registration and advertise the registry to 

the network, in order to make it retrievable by new, incoming peers. 

• RegistryParser: this interface defines methods necessary for parsing the 

registry and extracting the necessary information for maintaining topology 

and propagating messages to the fractal. 

Content 

Propagation 

This component defines interfaces for handling the propagation of publication and 

subscription messages, as well as the buffers for storing these messages into the 

peers: 

• PropagationMessageHandler: this interface defines methods for sending, 

receiving and consuming a message (e.g. a publication VDI) over the overlay. 

• MessageCreator: this interface defines methods for creating an overlay 

message. 

• MessageParser: this interface defines methods for parsing the different parts 

of an overlay message. 

• MessageKeeper: this interface defines methods needed to store a message in 

the local buffers so that it will be available for (i) the next propagation round 

and (ii) perform the matching. 

6.12.1.1 Message Format 

An Overlay TE message consists of the header and the payload, as depicted in Figure 29. The header has 

four fields: 

• The path with the peers that the message has visited so far (before sending the message, any 

peer which is not the initiator adds itself to the list). 

• The fractals (in case more than one fractals are defined in this field, each peer will consider the 

intersection of them) where the message is propagated. 

• The time to live of this message, i.e. how many propagation rounds will have to take place. 

• An operation code indicating the type of the message (publication, subscription or discovery 

gossiping). 



 
  

 

D3.2 System architecture Page 110 of 175 

 

Figure 29 - Overlay TE Message Format 

Below we present the XML Schema for the overlay propagation message. 

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSche ma"  
 xmlns:didl="urn:mpeg:mpeg21:2002:02-DIDL-NS" 
 targetNamespace="http://www.ict-CONVERGENCE.eu/sch emas/gorestMessage"  
 xmlns:gorest="http://www.ict-CONVERGENCE.eu/schema s/gorestMessage"  
 elementFormDefault="qualified">  
 <xs:import namespace="urn:mpeg:mpeg21:2002:02-DIDL -NS" 
schemaLocation="http://standards.iso.org/ittf/Publi clyAvailableStandards/MPEG-
21_schema_files/did/didl.xsd"/> 
 <xs:element name="gorestMessage" type="gorest:gore stMessageType"/> 
 <xs:complexType name="gorestMessageType"> 
  <xs:sequence> 
   <xs:element name="header" type="gorest:headerTyp e"/> 
   <xs:element name="payload" type="gorest:payloadT ype"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="headerType"> 
  <xs:sequence> 
   <xs:element name="TTL" type="xs:int"/> 
   <xs:element name="opcode" type="xs:int"/> 
   <xs:element name="path" type="gorest:pathType"/>  
   <xs:element name="fractals" type="gorest:fractal sType"/> 
  </xs:sequence> 
 </xs:complexType> 
 <xs:complexType name="payloadType"> 
  <xs:choice> 
   <xs:element name="publication_vdi" type="didl:DI DLType"/> 
   <xs:element name="subscription_vdi" type="didl:D IDLType"/> 
   <xs:element name="discovery_message" 
type="gorest:registrationMessageType"/> 
  </xs:choice> 
 </xs:complexType> 
 <xs:simpleType name="pathType"> 
  <xs:list itemType="xs:string"/> 
 </xs:simpleType> 
 <xs:simpleType name="fractalsType"> 
  <xs:list itemType="xs:string"/> 
 </xs:simpleType>  
 <xs:complexType name="registrationMessageType"> 
  <xs:sequence> 
   <xs:element name="peerId" type="xs:string"/> 
   <xs:element name="overlaySAP" type="xs:anyURI"/>  
   <xs:element name="leaveDate" type="xs:dateTime"/ > 



 
  

 

D3.2 System architecture Page 111 of 175 

  </xs:sequence> 
 </xs:complexType> 
</xs:schema> 

 

The XML schema of the peer registry is as follows. 

<?xml version="1.0" encoding="UTF-8" standalone="no "?> 
<xs:schema xmlns:gore="http://www.ict-CONVERGENCE.e u/schemas/registry"  
 xmlns:xs="http://www.w3.org/2001/XMLSchema"  
 elementFormDefault="qualified"  
 targetNamespace="http://www.ict-CONVERGENCE.eu/sch emas/registry"> 
 
<xs:element name="registry" type="gore:registryType "/> 
<xs:complexType name="registryType"> 
<xs:sequence> 
 <xs:element name="ontologyLocation" type="xs:anyUR I"/> 
 <xs:element name="peerIds" type="gore:peerList"/> 
 <xs:element name="overlaySAPs" type="gore:overlayS APList"/> 
 <xs:element name="leaveDates" type="gore:leaveDate List"/> 
</xs:sequence> 
<xs:attribute name="fractal" type="xs:string"/> 
<xs:attribute name="fractalMembers" type="xs:int"/>  
</xs:complexType> 
 
<xs:simpleType name="peerList"> 
 <xs:list itemType="xs:string"/> 
</xs:simpleType> 
 
<xs:simpleType name="overlaySAPList"> 
 <xs:list itemType="xs:anyURI"/> 
</xs:simpleType> 
 
<xs:simpleType name="leaveDateList"> 
 <xs:list itemType="xs:dateTime"/> 
</xs:simpleType> 
</xs:schema> 

6.13 REL TE 

A Rights Expression Language (REL) is a machine-readable language that declares rights and permissions. 

The MPEG REL, as defined by ISO/IEC 21000-5, provides flexible, interoperable mechanisms to support 

transparent and augmented use of digital resources throughout the value chain in a way that protects 

the digital resource and honours the rights, conditions, and fees specified for it. The REL Engine interface 

defines methods for operating over Rights Expression Language (REL) data structures. Classes 

implementing the REL Engine interface act as factories creating instances of classes performing the 

following functionalities: 

• Create Rights Expressions 

• Access data contained in Rights Expression 

• Authorise users to exercise rights 



 
  

 

D3.2 System architecture Page 112 of 175 

• Copy and move digital resources according to pre-determined rules 

6.13.1 Main components and their interaction 

The main components of the Engine are reported in the following table. 

Components  Function  
Rights Expression 

creation 

Creating a REL statement involves the following interfaces: 

• LicenseCreator: an interface defining methods to create an r:license 

element. The output is an xml file containing the created license 

• GrantCreator: an interface defining methods to create an r:grant 

• DigitalResourceCreator: an interface defining methods to create an 

r:digitalResource (e.g. encryption/ decryption/ format) 

• ProtectedResourceCreator: an interface defining methods to create an 

m1x:protectedResource 

• IdentityHolderCreator: an interface defining methods to create an 

m1x:identityHolder 

• IssuerCreator: an interface defining methods to create an r:issuer 

• KeyHolderCreator: an interface defining methods to create an r:keyHolder 

Rights 

ExpressionAccess 

Parsing a REL statement involves the following interfaces: 

• LicenseParser: an interface defining methods to parse an r:license element 

• GrantParser: an interface defining methods to parse an r:grant 

• DigitalResourceParser: an interface defining methods to parse an 

r:digitalResource 

• ProtectedResourceParser: an interface defining methods to parse an 

m1x:protectedResource 

• IdentityHolderParser: an interface defining methods to parse an 

m1x:identityHolder 

• IssuerParser: an interface defining methods to parse an r:issuer 

• KeyHolderParser: an interface defining methods to parse an r:keyHolder 

Authorisation Authorizing a user to exercise a right involves the following interfaces: 

• AuthorisationManager: an interface defining methods to authorise a user to 

exercise a right and retrieve information from the validation operation 

• AuthorisationResult: an enumeration defining possible result of an 

authorisation. 

 



 
  

 

D3.2 System architecture Page 113 of 175 

6.14 Security TE 

The SecurityEngine interface defines security-related methods. Classes implementing the SecurityEngine 

interface implement methods providing the following functionalities: 

• Create new credentials and manage certificates 

• Generate symmetric keys and encrypt/decrypt data 

• Store confidential information such as licenses and keys in the secure repository. 

• Certify the integrity of MXM tools 

6.14.1 Main components and their interaction 

The main components of the Engine are reported in the following table. 

Components  Function  
CertificateManager The certificate manager involves the following interfaces: 

CertificateManager, to generate private/public keys, import and export of 

public keys and certificates in various formats, perform cryptographic 

services, secure storage and retrieval of information, generation of keys, 

signature calculation and validation, etc. 

KeyManager The key manager involves the following interfaces: 

• KeyManager, to generate symmetric keys, providing generation of 

keys, hashes, signature calculation and validation, etc. 

SecureDeviceManager The Secure Device Manager involves the following interfaces: 

• SecureDeviceManager, to certify and verify the integrity of MXM 

Devices, requesting the calculation of a fingerprint of the device with 

the hardware software installed, and the verification of these values. 

SecureRepositoryManager The Secure Repository Manager involves the following interfaces: 

• SecureDeviceManager, to store, retrieve and manage confidential 

information in the secure repository. 

 



 
  

 

D3.2 System architecture Page 114 of 175 

7 Technical specification of Computing Platform level 

7.1 Network component 

Network level functionalities are provided by the CONVERGENCE Network (CoNet). CoNet is a content-

centric inter-network that provides users with a network access to remote named-resources, rather 

than to remote hosts. Named-resources can be either data
5
 (in the following referred to as “named-

data”) or service-access-points6 (“named-service-access-points”), identified by a network-identifier (a 

name). 

The name of a resource is its network-identifier (NID).Unlike Internet URLs, which include information 

about “where” a resource is located, CONVERGENCE NIDs do not necessarily contain a reference to a 

resource’s location. A network-identifier is an anycast address: a system may contain multiple replicas of 

the same named-resource. Network functionality will connect a user to the “best” replica (e.g., the 

closest one). For example:  

• A PDF copy of the TIMES newspaper for Sept-30-2010 could be a resource identified by “the 

times: Sept-30-2010”;  

• The service-access-point for an SQL database service provided by the Foo company could be a 

resource identified by the name “Foo: sql-database”;  

• The service-access-point for an MXM Content-provider device owned by the Foo company could 

be a resource identified by the name “Foo: mxm-content-provider”.  

As it handles named-resources through their network identifiers, rather than IP addresses, the network 

infrastructure is aware of the resources it is handling. This awareness can be exploited to support 

anycast routing, resource replication, and in-network caching [4] (if resources are data and not points of 

access to a service). These mechanisms are very useful but not supported by current IP networks7. The 

possibility of accessing resources without having to specify their location, simplifies mobility issues. It 

also means that resource names can be portable and do not depend on the service provider providing 

the resource. 

The CoNet allows users (e.g., end-users and providers) to advertise and revoke their named-resources. A 

resource can be replicated in different geographical locations by adopting the same network-identifier. 

                                                           
5 Named-Data include: documents, video, images, structured information, VDIs. The Network level is a general 
purpose one, as it can handle any kind of data and not only data generated by the CONVERGENCE system. 

6 A named-service-access-point is a network endpoint through which an upper layer entity (e.g., a server or a client) 
sends and receives data. In the actual Internet, for instance, TCP port n. 80 is the default service-access-point for 
HTTP servers. 

7 Some partial support is provided by proprietary systems, such as Content Delivery Networks (e.g. Akamai). 



 
  

 

D3.2 System architecture Page 115 of 175 

Replication enables users to exploit resources that are closer to their location and improves reliability of 

access. The CoNet provides secure distribution of resources by ensuring that the network-identifier 

cannot be forged and that receivers can verify the validity and provenance of named-resources [2][5]. 

Network functionalities can autonomously cache transiting resources [4], if this is allowed by security 

rules and by the nature of the resource
8
. 

When a named resource is named-data, the CoNet provides the means to deliver it to intended 

recipients. It can also facilitate the delivery of the named-data through replication/caching. 

When a named resource is a named-service-access-point, the CoNet provides the means to exchange 

data between a requesting upper layer entity and the upper layer entity addressed by the named-

service-access-point. This responds to a different need with respect to the distribution of named-data 

mentioned above. In the case discussed here, upper layer entities want to exchange data that do not 

need to be named and do not need to be made accessible and identified in the network. This 

functionality is needed by “traditional” client/server services (e.g. HTTP, POP, SMTP) and middleware 

services (e.g. transport of middleware service data), which do not assign names to their data. To support 

this need we introduce the concept of “un-named-data”, i.e. data not identified by a NID. The named-

sap case can be extended to multicast; in this case the NID of a named-sap has a multicast meaning, 

rather than an anycast one. 

The CoNet thus offers two mechanisms for the delivery of data. 

1. When users need to access named-resources that are data (e.g., documents, VDIs, files, etc.), 

the CoNet allows them to download actual content. In this case, the user asks the network to 

provide a resource with a given network-identifier and the network provides her with the actual 

content, without involving any other upper layer functionality. This modus operandi follows the 

content-centric networking paradigm recently proposed in the literature. 

2. When it is necessary to support service sessions for upper layer entities (e.g. a client-server 

couple), the CoNet couples the local upper layer entity with the named-service-access-point for 

the “best” remote upper layer entity providing the service (via anycast routing) and goes on to 

support an interactive exchange of un-named-data between these two upper layer entities. In 

the case of a client-server service session, for example, the un-named-data are upper layer data 

(e.g. HTTP, SMTP, POP, SQL, MXM messages) exchanged between a local client and a remote 

server (e.g. an HTTP server, a middleware device etc.). Thanks to this functionality, the CoNet 

can natively support most current Internet services, existing middleware protocols and any 

service that requires point-to-point bidirectional interaction or point-to-multipoint 

communications. This extension to the capabilities of a “plain” content-centric network [3] 

allows the CoNet to support not only content retrieval but also more traditional services. 

                                                           
8It is possible to cache data but not points of access to a service. 



 
  

 

D3.2 System architecture Page 116 of 175 

Access to a named-resource involves two steps: i) anycast routing of a user “request” to the best CoNet 

node providing the named-resource and ii) unicast routing of the “response” from the selected CoNet 

node toward the requesting CoNet user. Anycast routing uses the network-identifier of the named-

resource, as previously discussed. In unicast routing, endpoints are identified by a location-identifier 

(LID) – the equivalent of the IP address and port number on the current Internet. The use of location-

identifiers makes it possible to support sessions that require interactive exchange of data between a 

“client” and a “server”. After the first phase of anycast routing, when the CoNet selects the best server, 

further communications between the client and the server can be routed using their location-identifiers; 

in fact, if the client application tried to reuse the (anycast) network-identifier, the CoNet might select a 

different server, interrupting the session
9.10

. 

7.1.1 CoNet Architecture 

The CoNet is an (inter-)network layer that provides users with a network access to remote named-

resources. The main features of CoNet can be summarized as follows. 

- It is stateless: network nodes do not maintain information on the ongoing communications. 

- It limits the size of name-based routing tables by caching only a subset of all possible routes; 

missing routing entries are looked up in a name-system and then cached. 

- It can be integrated in existing IP networks by using a new header option, which makes IP 

content-aware [6]. In this case, the nodes could use hybrid routing tables containing both IP 

network addresses and names. However, CoNet also supports the clean-slate or overlay 

deployment approaches. 

CoNet is a system that interconnects CoNet Sub Systems (CSSs) (see Figure 30
11

). A CSS contains CoNet 

nodes and exploits an under-CoNet technology to transfer data among CoNet nodes. A CSS could be: 

- A couple of nodes interconnected by a point-to-point link, e.g. a PPP link or a UDP/IP overlay 

link. 

                                                           
9One way to implement the location-identifier (without exploiting IP) would be to adopt a link-layer source-routing 
approach. In this case, the structure of the location-identifier would represent the sequence of link-layer interfaces to 
be followed from the CoNet node (Server) to the requesting CoNet user, i.e. on the reverse path. This sequence is 
built during the preceding anycast routing phase. The location-identifier has a temporary meaning; it is assigned in a 
distributed way, and has no impact on the routing-plane of the CoNet, which is concerned only with network-
identifiers. Link-layer source-routing is the approach adopted by the PSIRP FP7 project (http://www.psirp.org/). 

10 It has not yet been decided whether the CONVERGENCE system will support also service sessions between two 
NIDs, when it happens that NIDs are unicast addresses and thus univocally identifies a service access point. 

11 Please note that Figure 30 is identical to Figure 14 and is replicated here for the reader’s convenience. 



 
  

 

D3.2 System architecture Page 117 of 175 

- A layer-2 network, e.g. Ethernet, or a layer-3 network, e.g. a private/public IPv4 or IPv6 network, 

or a whole IP Autonomous System, or even the whole current Internet. 

border-nodes

SN

serving-node

IN

internal-node

R

plain IP router

BN

CSS n.2 

(IPv4 network)

CSS n.3 

(L2 link)

CSS n.1

(overlay link)

SN

R
BN BN

BN

Name 

Sys. 

 

Figure 30: CoNet Architecture 

The devices within a CSS use an autonomous and homogeneous under-CoNet addressing space and, if 

necessary, an interior under-CoNet routing protocol (e.g. [13]).  

CSSs can be defined rather freely. For instance, if CoNet protocols are implemented only in user 

equipment, interconnected by the current Internet, we have only one CSS: the current Internet. If CoNet 

protocols are implemented in current border gateways (i.e. gateways running BGP), CSSs coincide with 

current Autonomous Systems. If CoNet protocols are implemented in all current routers, then CSSs 

coincide with current IP subnets. If CoNet protocols are implemented in nodes that interconnect 

different layer 2 networks, removing IP, CSSs coincide with these layer 2 networks. 

CoNet nodes exchange CoNet Information Units (CIUs): interest CIUs convey requests for named-data; 

named-data CIUs transport chunks of named-data, e.g., parts of a file (see Figure 31). To best fit the 

transfer units of an under-CoNet technology, all CIUs are carried in smaller CoNet data units named 

carrier-packets.  



 
  

 

D3.2 System architecture Page 118 of 175 

named-data

chunk

named-data CIUs

carrier-packets

under-CONET data-unit

Network Identifier

Chunk Number

interest CIU

Segment info

copied in

carrier-packet 

header

carrier-packet 

payload header

Header

(Network-Identifier)

(Chunk Number)

(Payload Type)

carrier-packet

Payload Header

(segment info)

Path info

Payload

Network Identifier

Chunk Number

named-data CIU

Data Chunk

Temporal /Security 

Data
segmented in 

carrier-packet 

payloads

copied in

carrier-packet 

header

IP CONET 

option

 

Figure 31: CoNet Information Units (CIUs) and carrier-packets 

CoNet nodes are logically classified as end-nodes (ENs), serving-nodes (SNs), border-nodes (BNs), 

internal-nodes (INs) and name-system-nodes (NSNs). End-nodes are user devices that request named-

data by issuing interest CIUs. Serving-nodes store, advertise and provide named-data by splitting the 

related sequence of bytes into one or more named-data CIUs, which are transferred by means of carrier-

packets (see Figure 31). Border-nodes, located at the border between CSSs, forward carrier-packets by 

using CoNet routing mechanisms (i.e. routing-by-name and inter-CSS source-routing, as described 

below) and cache named-data CIUs. Optional Internal-Nodes can be deployed inside a CSS to provide in-

network caches; unlike border-nodes, internal-nodes only use under-CoNet routing mechanisms to 

forward carrier-packets. The CSS uses optional Name-System-Nodes to assist the CoNet routing-by-name 

process. CoNet may be deployed following three approaches: 

- overlay approach: CoNet runs on top of the IP layer; CSSs are couples of nodes connected by 

overlay links, e.g. UDP/IP tunnels, as in CSS n.1 in Figure 30; 

- clean slate approach: CoNet runs on top of layer-2 technologies (e.g. Ethernet, PPP, MPLS LSP); 

CSSs are nodes connected by layer-2 links/networks, and CoNet replaces the IP layer, as in CSS 

n.3 in Figure 30; 



 
  

 

D3.2 System architecture Page 119 of 175 

- integration approach: CoNet functionality is integrated in the IP layer by means of a novel IPv4 

option [6] or by means of an IPv6 extension header, as in CSS n.2 in Figure 30. 

Readers are asked to note the three approaches are not mutually exclusive, but can be combined. 

Variants of the clean-slate and overlay approaches have been already discussed in the literature and by 

other research projects [7], [8], [9]. However, to the knowledge of the authors, the proposed integration 

approach is novel.  

7.1.2 Model of operations 

In this section we describe an example of the operation of CoNet in the scenario depicted in Figure 30, 

in which an end-node retrieves a chunk of named-resource from a serving-node. The example assumes 

that the serving-node has already advertised the related network-identifier in the CoNet by using a 

name-based routing protocol, as described in section 7.1.4 below. The retrieval of named-data involves 

a sequence of a request - delivery phases in which the end-node requests and obtains named-data CIUs 

and then reassembles the whole named-data (Figure 31). For simplicity, we consider a case in which the 

named-data are fully contained in a single named-data CIU that, in turn, is fully contained in a single 

carrier-packet. Therefore, only one request-delivery phase is needed.  

Request 

- An end-node requests the named-data CIU by issuing an interest CIU, which includes the network-

identifier of the named-data; the interest CIU is encapsulated in a carrier-packet, named I. 

- The end-node and intermediate border-nodes route-by-name the packet I. The route-by-name process 

singles out the CSS address
12

 of the next border-node towards the serving-node, on the basis of the 

network-identifier contained in I. Then, the routing engine encapsulates the carrier-packet I in the 

under-CoNet data-unit and uses the CSS address as the destination address. 

- The end-node and the set of traversed border nodes in the “upward” path record their CSS addresses 

in a control field of the carrier-packet I named path-info
13

; 

                                                           
12A CSS address is an address consistent with the under-CoNet technology traversed by the packet (e.g. an IPv4 
address). 

13 This info will be used to find the reverse-path to route the named-data CIU back to the requesting node, in the 
delivery phase. In [7] the same goal is achieved by maintaining states in network nodes. We are aware of the trade-
offs involved, and we propose to use source-routing as we think that the number of CoNet border nodes traversed 
can be rather limited (e.g. CSSs could coincide with Internet Autonomous Systems). As an alternative, the path-info 
field could contain the NID of a named-sap, specifying where the requesting end-node can be reached. In this case, 
reverse-path routing could be performed by means of route-by-name procedures. This would be more convenient if 
CSSs were smaller and the number of traversed CoNet border-nodes higher. It would also give the network operator 
more freedom to choose the reverse-path. 



 
  

 

D3.2 System architecture Page 120 of 175 

- The internal-nodes parse carrier-packet I and then forward it by using the under-CoNet routing engine. 

Delivery 

- The first in-path CoNet node (BN, IN or SN), which is able to provide the named-data CIU requested by 

I, sends back the CIU, without further propagating I. 

- The named-data CIU is encapsulated in a carrier-packet, named C. The carrier-packet C traverses the 

same CSSs as the carrier-packet I, but in the downward direction until it reaches the requesting end-

node. 

- The serving and the border nodes perform inter-CSS reverse-path routing in a source-routing fashion, 

using the path-info control field. This path-info is the copy of the path-info set up in I during upward 

routing. 

- Within a CSS, the under-CoNet technology (e.g. IP) routes carrier-packet C. In these conditions, we can 

use traditional traffic engineering mechanisms. 

- All border-nodes and internal-nodes in the downward path can cache the named-data CIU contained 

in C. 

We observe that the use of inter-CSS source-routing on the reverse-path does not require “pending” 

states in the nodes traversed by the packed. We also observe that in end-to-end sessions bounded 

within the same IPv4 CSS, the path-info field is not necessary, as its only content would be the IP address 

of the end-node, already contained in the IP header. 

7.1.3 CoNet protocol stack 

As shown in Figure 32, every CoNet node has the CoNet and the Under-CoNet layers. The CoNet layer is 

connectionless, handles CIUs and carriers-packets, and provides other functionality (e.g. caching, 

security, etc.). 

The end-nodes also have transport-level functionality, support reliability and flow control, and provide 

an Applications Programming Interface (API) (see section CoNet TE and CoNet TE API for the definition 

of the API between CoNet and upper layers). In what follows, we adopt the receiver-driven TCP-like 

approach proposed in [7], adapting it to our own terminology. 

In this approach, the transport algorithm issues a sequence of interest CIUs and each of them requests 

only a small part of a named-data CIU, e.g. 1500 bytes per interest CIU. By controlling the sending rate 

of these interest CIUs, it is possible to obtain a TCP-like flow control mechanism. For instance, we could 

replace current TCP ACKs with interest CIUs and apply TCP congestion-window concepts to in-flight 

interest CIUs. 



 
  

 

D3.2 System architecture Page 121 of 175 

CONET

Under-CONET

(L2, IP*, UDP/IP)

Transport 

API

every nodes

only end-nodes

CONET Information Units (CUIs)

carrier-packets

 

Figure 32: CoNet Protocol Stack 

Figure 31 shows the packetization process, the CoNet CIUs (interest and named-data) and carrier-

packets. In terms of notation, our interest CIU and named-data CIU correspond to the “interest packets” 

and “data packets” proposed in [7]. However the protocol information is different with respect to [7] 

(for example, our interest CIU carry the segment info field which is not present in [7]). In addition, we 

introduce the concept of carrier-packets, designed to improve CoNet forwarding speed.  

Details of CoNet protocol operations are provided in deliverable D5.1 [10], which also describes the 

solution used when the CSS is an IP network, e.g. the IPv4 network in Figure 30. 

The named-data (i.e. the representation in bytes of a resource) are split into different chunks. The 

optimal chunk size is the result of several tradeoffs. We favour a size roughly equivalent to the size of 

chunks in current P2P systems, e.g. 256-512 kbytes. However, the CoNet architecture can support 

variable chunk sizes. 

Each chunk is inserted in a named-data CIU. Named-data CIUs are the data-units of the caching process 

and their control information includes the network-identifier, the chunk number, as well as timing and 

security data. 

The network-identifier is a tuple <namespace ID, name>. The namespace ID determines the format of 

the name field. Thus, the name field is a namespace-specific string. Each namespace uses its own rules 

to generate unique names with its own format. We specify a default naming format, where the name is 

the composition of two hash values, i.e. name=<hash (Principal identifier), hash (Label)>. Principal 

identifier and label are flat-names and a hash function transforms them to a fixed number of bytes (e.g., 

6 bytes). A principal is the owner of her named-data and uses a Principal identifier whose hash is unique 

in the namespace. Label is an identifier chosen by the principal to uniquely differentiate her named-

data. For instance, we could define the namespace “www” for the names of web resources (defined 

using current naming conventions), use the domain name (e.g. www.cnn.com) as the principal identifier 

and the URL (e.g. /foo/index.html) as the label. 



 
  

 

D3.2 System architecture Page 122 of 175 

Timing-data includes time information, like the expiry date, which can be exploited to implement digital 

forgetting mechanisms. Security-data make it possible to validate a named-data CIU before caching it or 

delivering it. 

An interest CIU is a request for a set of bytes belonging to a named-data CIU, e.g., all bytes from byte X 

to byte Y (segment info field) of the named-data CIU n. Z (chunk number field).  

Carrier-packets are low-level carriers of CIUs and are the data-units of the forwarding process. Carrier-

packets are reassembled in border-nodes or in internal-nodes that want to cache the related named-

data CIU, and in end-nodes; this operation is necessary to validate the content. Given that a named-data 

CIU could be too large to be transported by a single under-CoNet data-unit (e.g. 1.5kB for Ethernet and 

64kB for IP) we introduce the concept of carrier-packets. Carrier-packets also make it possible to 

perform source-routing; carrier-packets are tightly associated with specific communication sessions 

between an end-node and a serving-node (or a cache). 

7.1.4 Name-based routing: lookup-and-cache 

The name-based routing is the mechanism used to update CoNet name-based routing tables. These are 

used by end-nodes or border-nodes to route-by-name interest CIUs. An entry in the name-based routing 

table contains the tuple <network-identifier, mask, next-hop, output-interface>. This is like an IP routing 

table entry. However, instead of net-prefixes we have name-prefixes, i.e. couples <network-identifier, 

mask>. Next-hop is the CSS address of the next border-node toward the serving-node. 

In [11][7] the authors propose the use of traditional routing protocols, e.g. BGP or OSPF, to disseminate 

name-prefixes. We call this approach prefix-dissemination. The disadvantage of this system is that 

aggregation of names (i.e., network-identifiers) is not effective, unless names include information about 

the location of the serving node [12]. As a result, prefix-dissemination is likely to produce large name-

based routing tables. As an example, consider supporting DNS domain names (as we would like to). In 

principle, it could be possible to perform limited location-based aggregation using top level domains [7]. 

However, this would not work for generic top level domains (.com, .net, etc.) which include very large 

numbers of names (the .com domain currently has about 90 million) in many different locations. Even in 

the case of country-code top level domains aggregation is unlikely to be very efficient. For instance, 

about 30% of .it names are outside Italy. Given that it is not feasible to include all possible names in the 

routing table, we propose a name-based routing, which we name lookup-and-cache. In this approach, a 

CoNet node (end-node or border-node) uses a fixed number of rows in its name-based routing table as a 

route cache. When a node misses the routing info required to route-by-name an interest CIU, it looks up 

its routing entry in a DNS like name-system and inserts the new entry in the route cache. When all rows 

are filled in, new routing entries replace old ones according to a suitable policy. From a logical point of 

view, a name-system serves a single CSS and a single namespace.  



 
  

 

D3.2 System architecture Page 123 of 175 

If a serving-node belongs to the same CSS as the node requesting the routing info, the name-system 

returns the CSS-address of the serving-node. If the serving-node is outside that CSS, the name-system 

returns the CSS-address of the egress border-node. If there are more than one serving-nodes, or egress 

border-nodes (due to replication operations), the name-system uses known techniques [14] to select 

the most convenient destination.  

Prefix-dissemination and lookup-and-cache approaches can work separately or they can be combined, 

e.g. by using prefix-dissemination for the most popular named-data and lookup-and-cache for less 

popular data.  

7.1.5 Integrating CoNet in IP 

In this section, we describe a technique to support the CoNet in a CSS that is an IP network (IP-CSS), e.g. 

CSS n.2 in Figure 30. The IP network could correspond to the whole public Internet. Our approach thus 

provides a way to offer CoNet services over the Internet. To achieve this goal we propose what we can 

call an integration approach. This approach i) does not require us to give up IP, as in the clean-state 

approach; ii) performs better than a CoNet on top of IP, as in the overlay approach. The idea of the 

integration approach is to make IP itself content-aware. We propose to transport the header of a CoNet 

carrier-packet in a novel IPv4 option (or IPv6 extension header), which we call the CoNet option (see 

Figure 31 and [6]). In this kind of IP-CSS, border and internal CoNet nodes are simply IP routers extended 

with CoNet functionality.  

Figure 33 shows a possible architecture for a border or internal CoNet node. A fast forwarding path 

handles forwarding operations for CoNet carrier-packets and for plain IP packets. The hardware (RIB or 

FIB) routing table does not only include IP net-prefixes as entries but also name-prefixes. A name-prefix 

entry may refer both to remote named-data and to local cached named-data. In the latter case the 

routing entry points to the local cache engine, therefore the CoNet node will return the locally cached 

named-data when receiving an Interest CIU that matches the routing entry. Other CoNet and IP 

functions with less stringent delay constraints are performed by a CPU. Examples include IP and name-

based routing, execution of caching algorithms, reassembly of named-data CIUs for caching, replies to 

interest CIUs requesting cached data, etc.  

HW FW Engine

(route cache)

IN
OUT

slow forwarding path

fast forwarding path

CPU cache

 

Figure 33: Architecture of a CoNet node of an IP-CSS 



 
  

 

D3.2 System architecture Page 124 of 175 

Most of these operations require parsing of incoming CoNet CIUs. With our approach, it is possible to 

forward an incoming CIU using the HW engine (without affecting forwarding performance) and in 

parallel to process it in the CPU in the so called “slow-path”.  

The advantages of this approach with respect to the overlay approach is that it allows CoNet nodes to 

quickly forward carrier-packets, without having to perform a slow deep packet inspection. This is a 

fundamental requirement for the implementation of content-centric features in nodes where a high 

packet rate demands fast forwarding. In addition, the integration approach makes it possible to restrict 

deployment of CoNet routing-by-name functions to a subset of nodes (i.e. border-nodes and end-nodes) 

while allowing caching in all nodes running the new IP option (i.e. internal nodes). By contrast, in the 

overlay approach, the only way to implement caching in all nodes is to deploy routing-by-name 

functionality in all nodes. 

The disadvantage of the integration approach is that it requires a new IP option. However this is far less 

disruptive than the clean-state approach. The approach lends itself to different deployment scenarios. In 

an extreme case the IP-CSS could be the whole Internet and routing-by-name functions would be 

performed only in end-nodes. All that would be required to implement in-network caching would be to 

introduce the new IP option; there would be no need to introduce routing-by-name functions in routers. 

In another scenario we could partition the Internet into a set of IPv4 CSSs that interoperate exclusively 

through CoNet protocols. In this scenario, each CSS would uses an IPv4 addressing scheme unique to the 

CSS. IP routing would thus be restricted to individual CSS. This would allow new providers to offer public 

CoNet services without using public IP addresses, and without increasing the size of the routing tables of 

Internet backbone routers – a critical scalability issue for all CCN architectures and even for the current 

Internet [12]. 

7.1.6 CoNet Application Program Interface 

This section describes the CoNet Application Programming Interface provided by the CoNet. Table 9 

reports a preliminary set of primitives. Thanks to these primitives, the CoNet allows its users to:  

- Advertise named-resources, i.e. resources identified by a network-identifier (NID); 

- Access named-resources; 

- Deliver named-data and un-named-data (i.e., upper layer data).  

The scope of applicability of some primitives depends on the type of the named-resource they deal 

with. We thus distinguish two classes of named-resources: named-data (i.e., documents, video, images, 

structured information, VDIs, etc.) and named-service-access-points. 

For examples of the use of these primitives see the following section. 



 
  

 

D3.2 System architecture Page 125 of 175 

Table 9 – Service primitives offered by the CoNet API 

Service Primitive Applicability Origin Output Description 

Advertise  (NID, 
resource-type, 
[resource /port], 
expiry, auth,…) 

Named-data 

and named-

service-

access-

points 

CoNet 

user 

(e.g., 

applicati

on or 

middlew

are) 

success

/failure 

This primitive is used by a CoNet user to make a local 

named-resource accessible to other CoNet users.  

NID is the network-identifier of the named-resource. 

resource-type specifies if the resource is named-data 

or a named-service-access-point. 

In the case of named-data, resource is actual content 

(e.g., a document, an image, media, file, a VDI).  

In the case of a named-service-access-point, port is a 

local entity port where an entity expects to receive 

data through an Indication primitive (this corresponds 

to the transport port that IP networks use as a local 

address in a host to deliver data to a given entity). 

expiry defines a date after which the advertisement 

will be automatically revoked. 

auth is a set of information that authenticates the 

user advertising a named-resource with a specific NID. 

This prevents the forging of NIDs. Failures may occur 

if Auth is not valid, a resource type is not consistent, 

etc. 

After Advertise, a new named resource is introduced 

into the network. The resource will be reachable by 

name by any entity in the CONVERGENCE network. 

Given that CoNet supports routes-by-NID, this 

information has to be introduced into the network to 

route requests for the new named resource towards 

the appropriate network nodes Thus, Advertise 

changes routing information on CoNet.  

Update  (NID, 
resource-type, 
resource/port, 
expiry, auth,…) 

Named-data 

and named-

service-

access-

points 

CoNet 

user 

(e.g., 

applicati

on or 

middlew

are) 

success

/failure 

This primitive is used by a CoNet user to update the 

resource associated with a previously advertised NID. 
The meaning of the parameters is the same as in 

Advertise. However, in this case it is not necessary to 

introduce or modify routing information. 

 



 
  

 

D3.2 System architecture Page 126 of 175 

Revoke  (NID, 
auth,…) 

Named-data 

and named-

service-

access-

points 

CoNet 

user 

success

/failure 

This primitive is used by a CoNet user to revoke (and 

delete) a local named-resource, identified by NID.  

auth is a set of information that authenticates the 

user seeking to revoke the named-resource. A failure 

occurs when the named-resource is not available. 

Like Advertise ,Revoke modifies CoNet routing 

information  

Get (NID) Named-Data CoNet 

user 

data / 

failure 

This primitive is used by a CoNet user to retrieve a 

named-resource identified by NID. A failure occurs if 

the named-resource is not available. 

Send2Name  
(NID, data, port) 

Named-

service-

access-

points 

CoNet 

user 

success 

/ failure 

This primitive is used by a CoNet user to send un-

named-data (i.e. upper layer data) toward a named-

service-access-point, identified by NID. If the CoNet 

user waits for a response from the remote endpoint, 

the parameter port is the local entity port where the 

CoNet user expects the Indication primitive. 

Indication  (LID, 
data) 

Service 

access point 

CoNet  When un-named-data (i.e. upper layer data) are 

received by a service-access-point, this primitive is 

invoked by the CoNet on the entity which is listening 

to the local entity port associated with the service-

access-point (see advertise).  

The primitive gives the un-named-data and the 

temporary identifier LID of the location of the remote 

entity that has sent these un-named-data to the 

service entity listening to the port. 

Send2Location 
(LID, data, port) 

Service 

access point 

CoNet 

user 

 This primitive is used by a CoNet user to send un-

named-data (i.e. upper layer data), via unicast, to a 

specific entity whose location is temporary identified 

by LID.  

If the CoNet user expects a response from the remote 

endpoint, the parameter port is the local entity port 

where the CoNet user expects the Indication 

primitive. 

 



 
  

 

D3.2 System architecture Page 127 of 175 

7.1.7 Examples of use of the CoNet Application Program Interface 

In this section, we show how the CoNet API could be exploited to support typical operations. Details are 

preliminary. The final specifications will be completed at a later stage in our work. 

7.1.7.1 Advertising local data 

Figure 34 depicts the case of a CoNet user (e.g. a provider application), who wishes to make available to 

other CoNet users the local file “times09-30-10.pdf”, with network-identifier (NID) “the times: Sept-30-

2010”. The provider calls Advertise. The local CoNet node stores the file locally, updates an internal 

database that maps “the times: Sept-30-2010” to the file “times09-30-10.pdf,” and updates the routing 

plane of the whole CoNet, so that the local CoNet node becomes a provider of the named-resource “the 

times: Sept-30-2010”. There may also be other providers. 

Advertise (“the times: Sept-30-2010 ”,DATA,/home/times/times09-30-10.pdf,..)

CoNet user (e.g., Provider application)

Store named-resource on the 

local CoNet node
(e.g. update local NiD-to-resource database)

Update CoNet routing 

data: /home/times/times09-30-10.pdf

“the times: Sept-30-2010”

times09-10-10.pdf

C
o
N
e
t

 

Figure 34: Advertising a local named-resource (named-data) 

7.1.7.2 Advertising local services 

Figure 35 depicts the case of a CoNet user (e.g. a provider application) who wishes to make available to 

other CoNet users a local SQL database service with network-identifier (NID) “Foo: sql-database”. The 

provider runs the relevant server application, which is configured to receive its service-data (un-named-

data for the CoNet) through the local entity port 0x067497. Then the provider application uses the 

Advertise primitive. Subsequently, the local CoNet node updates an internal database that maps “Foo: 

sql-database” to the local entity port 0x067497 and updates the routing plane of the whole CoNet, so 

that the local CoNet node becomes a provider of the named-resource “Foo: sql-database”. To improve 

the reliability of database access, the Foo company may replicate the database by repeating the same 

advertising operation on different CoNet nodes. 



 
  

 

D3.2 System architecture Page 128 of 175 

Advertise 

(“Foo: storage-service ”,SAP,0x067497,..)

CoNet user ( e.g., Provider app.)

Update local NiD-to-resource database

Update CoNet routing 

service entity
(e.g. SQL server)

Interface handler = 0x067497 

Store named-resource on 

the local CoNet node
(e.g. update local NiD-to-resource database)

Update CoNet routing 

handler:0x067497

“Foo: sql-database ”

s
e
r
v
ic
e
-d
a
ta

C
o
N
e
t

 

Figure 35: Advertising a local named-resource (named-service-access-point) 

7.1.7.3 Downloading data 

Figure 36 depicts the case of a CoNet user (e.g. a end-user application) who wishes to download the 

document identified by the NID “the times: Sept-30-2010”. The user application uses the GET primitive. 

The local CoNet node identifies the specific instance of the GET primitive with a Location Identifier (LID). 

Then the CoNet node sends the network data unit containing (at least) the LID and the NID. The CoNet 

routes-by-NID this data unit to the best remote node that is advertising “the times: Sept-30-10”. When 

the remote node is reached, the CoNet functionality directly replies by sending-back the data-unit, 

containing the file “times09-10-10.pdf”. This data-unit is routed using the LID and contains the NID (“the 

times: Sept-30-10”). The presence of the NID in the reply allows intermediate nodes to identify the 

traversing content and possibly to perform caching.  



 
  

 

D3.2 System architecture Page 129 of 175 

Application

CoNet user 

(e.g. enduser app) AnyCoNet node 

Advertising

“the times: Sept-30-2010” 

(e.g. Provider device)

Get 

(“the times: 

Sept-30-2010 

”)

CoNet

interface

route by NId

route by LId

CoNet 

interface

NIdLId

LId NId times09-10-10.pdf

LId
 

Figure 36: Downloading a named-resource (named-data) 

7.1.7.4 Request-response service session 

Figure 37 depicts the case of a CoNet user (e.g. an end-user client application), who wishes to send un-

named-data (e.g. a SQL query)) to a remote server with NID “Foo: sql-database”. The user application 

uses Send2Name, specifying the local entity port 0x0076 where the response is expected. The local 

CoNet node associates the local entity port with a Location Identifier, LID. Then the CoNet node sends 

the network data unit-containing the LID and the NID. The CoNet routes-by-NID the data-unit to the best 

remote node that is advertising “Foo: sql-database”. When the remote node is reached, the remote 

CoNet functionality invokes Indication on the entity listening to the local entity port of the server 

application, and transfers the LID and the un-named-data, i.e. the SQL query. Subsequently, the server 

processes the request and replies to the client using Send2Location and including the response (un-

named-data), the client LID and the local entity port 0x067497 of the local interface where further 

replies from the client are expected. The CoNet adds a local-identifier LID* addressing the local entity 

port and routes by LID the resulting data-units. When the un-named-data reach the client, the CoNet 

functionality of the client device sends an Indication to the client application, which includes both the 

server response and the LID* of the remote server.  



 
  

 

D3.2 System architecture Page 130 of 175 

Application

(client)

CoNet user 

(e.g. enduser app)

Send2Name

(“Foo: sql-database”, 

{request}, 0x0076)

CoNet 

interface

LId

AnyCoNet node 

advertising 

“Foo: sql-database” 
(e.g. Provider device running a SQL 

server)

Application

(server)

Indication

(LId, {request})

(NId,Lid*)

Send2Location

(LId, {response}, 

0x067497)

CoNet

Indication

(Lid*, {response})

route on NId

route on LId

NIdLIdrequest

LId Lid* request

CoNet 

interface

0x0076

0x067497 

 

Figure 37: Request-response service session 

7.1.7.5 Interactive service session 

Figure 38 depicts the case of a CoNet user (e.g. an end-user CoMid entity) who wishes to interactively 

exchange un-named-data (i.e., middleware messages) with a remote CoMid entity identified by the NID 

“Foo: mxm-content-provider”. This case is equivalent to the case of the request-response service session 

described in Section 7.1.7.4. However, after the first interaction, the endpoints continue to exchange 

un-named-data using Send2Location.  



 
  

 

D3.2 System architecture Page 131 of 175 

CoMid

entity
(MXM End-user 

device)

CoNet user 

(e.g. enduser 

MXM device)

Send2Name

(“Foo: mxm-content-

provider, {message1},..)

CoNet 

interface

LId

AnyCoNet node 

advertising 

“Foo: mxm-content-

provider” 
(e.g. Foo MXM device)

CoMid 

entity

(MXM 

Content –provider

device)

Indication

(LId, {message1})

(NId,Lid*)

Send2Location

(LId, {message2},..)

CoNet

Indication

(Lid*, {message2})

CoNet 

interface

Send2Location

(Lid*, {message3})

Indication

(LId, {message3})

Send2Location

(LId, {message4},..)

Indication

(Lid*, {message4})

 

Figure 38: Interactive service-session 

7.1.7.6 Remote advertising 

The advertising examples presented in sections 7.1.7.1 and 7.1.7.2 describe cases in which the named-

resource is provided locally. This means that a user who wishes to provide a named-resource should use 

a device that is always connected to the network. However, the user may not want to manage such a 

device and may prefer to use a hosting provider who will take care of advertising her named resources. 

This can be achieved by using an application service, rather than a CoNet service. Thus, a Foo hosting 

provider may advertise a service named “Foo: hosting-service” to which the user can “tunnel” her 

named-resource (i.e., the named-data and the relevant NID). The hosting-service will then advertise 

(and store) the named-resource locally.  

7.2 Security Component (CoSec) 

7.2.1 Survey 

In the architectural design of CONVERGENCE, CoSec is the component within the Computing Platform 

level responsible for handling cryptographic protocols and security related tasks. The CoSec has a 

distributed architecture encompassing several independent and possibly distant components with each 

component comprising software as well as hardware. In the application flow of security protocols, these 

components interact with each other. As a consequence, their APIs can be quite complex.  



 
  

 

D3.2 System architecture Page 132 of 175 

CoSec offers some "high-level" security support to CoMid; for instance encryption of content, 

authentication of users, etc. (Note that it can offer similar support to CoNet). Within CoMid, these 

services are offered to all CoMid engines by the Security TE. 

In its current state, the MPEG API for the Security TE is not fully aligned with this architecture. There are 

two reasons for this. First, the MPEG API offers a variety of low-level cryptographic functionality (such as 

key-generation, random-number generation) which should better be considered “low-level” 

cryptographic algorithms, to be allocated to CoSec internal behaviour. Second, in CoSec, the API needs 

to be significantly extended, especially when the secure repository is a smart card. In fact, a set of 

functionality (e.g. user authentication, key unwrapping) selected for CONVERGENCE can be realized 

involving smart cards, since the smart card will be the preferred choice for a secure repository in 

CONVERGENCE. It is considered a security enhancement that some security relevant functions are even 

entirely performed on-card. 

We therefore plan to reconsider the API for the current Security TE, and work on a new API for CoSec 

service offered to TEs and a second more complex API for CoSec internal cryptographic functions. The 

full definition of these API lies beyond the scope of D3.2 and will be completed in subsequent work (see 

also beginning of Section 9.11 and 9.11.2). The current Security TE API is reported in the ANNEX, 

documenting the actual status of our work and starting point for next work. 

CoSec components are distributed on the following computing platforms: 

1. Client computers (e.g. end-user laptops) 

2. Application servers 

3. Peers (e.g. node computers in a network) 

4. Smart Cards (typically held by the end-users) 

 

Typically, several of the above components will interact in the execution of cryptographic protocols. Due 

to the nature of these protocols and their underlying parameters, the interface structure between CoSec 

functions will inevitably be complex. A detailed description lies beyond the scope of this document. 

7.2.2 Cryptographic Primitives 

CoSec will use established off-the-shelf solutions for cryptographic functionalities. 

1. Fast symmetric encryption and decryption of content (F.ENG-VDI c.) 

a. Established primitives like AES-CBC 

b. Key derivation through sophisticated protocols like ABE (Attribute Based Encryption),, 

IBE (Identity Based Encryption). 

2. Asymmetric cryptography (F.USER-AUTH-CONV, F.USER-AUTH-SERV, F.SERV-AUTH, F.PEER-

AUTH, F.ENG-AUTH, F.ENG-VDI,F.ENG-VDI-SIGN-THPART) 



 
  

 

D3.2 System architecture Page 133 of 175 

a. Established primitives like RSA or Elliptic Curves 

b. Used for key agreements, signatures, certificates, etc. 

3. Basic primitives like cryptographic hashes (F.USER-AUTH-CONV, F.USER-AUTH-SERV, F.SERV-

AUTH, F.PEER-AUTH, F.ENG-AUTH, F.ENG-VDI) 

 

Beyond these standard solutions, to enable the fulfilment of the Security Functional Requirements the 

following much more advanced primitives shall be used: 

4. Group Signature Protocol (F.USER-ID b., F-USER-ID-GROUP) 

a. Sign a VDI’s content anonymously on behalf of a pre-specified group 

b. Allow unveiling anonymity only on request 

5. Identity and Attribute Based Encryption (F.TE-LIC-ISS, F.TE-LIC-ENF) 

a. Recipients of content (or messages) are assigned specific (arbitrary) attributes 

b. The provider of content can encrypt according to attributes, so that the possession of 

the same attributes is needed to decrypt the content 

6. Pseudonymous access via “Restricted Identification”. (F.USER-ID c., F-USER-ID-PSEUDONYM) 

The use of pseudonymous access is motivated by data protection issues. 

a. Within a specific context, each user has a unique pseudonym to identify himself 

b. For disjoint context, users’ pseudonyms cannot be linked 

 

For the benefit of the reader, a short overview of each of these more sophisticated schemes is given 

below: 

7.2.2.1 Group Signature Protocol 

Group Signature Schemes allow all members of a previously created group to issue a digital signature on 

behalf of the entire group. A third party can use the group’s public key to verify if the signature 

originates from the group (by using one common public key associated to that group), but cannot 

ascertain the identity of the group member who made the signature. Multiple anonymous signatures 

issued by the same member of the group cannot be linked. (This implies that each signer is anonymous 

and not just pseudonymous). 

The group is administrated by a” group master”, who must be absolutely trustworthy. The group master 

holds a “master key” with which he can register new members, revoke existing members, and unveil the 

identity of a signer in the event of a dispute. This ability may be a procedural requirement in some 

applications, where unconditional anonymity may not be permitted. Note that Group Signatures are 

quite a recent development and legal implications/requirements related to their use are not clearly 

defined. 

In the LMU scenario, for example, the group consists of all registered students who have access to 

(some of) the lectures offered, and all lecturers. Membership requires a registration process. During 



 
  

 

D3.2 System architecture Page 134 of 175 

registration each student receives a smart card that includes a personal signature key (used to issue 

personal digital signatures), but also a private group signature key that enables the student to issue an 

anonymous group signature on behalf of the entire student group. An exemplary usage of such a group 

signature consists in a student’s ability to sign annotations (e.g. on behalf of a group attending a lecture) 

without revealing his identity. 

7.2.2.2 Identity Based Encryption – Attribute Based Encryption 

In recent years, research on Identity Based Encryption (IBE) and Attribute Based Encryption (ABE) have 

made significant progress, and cryptographic protocols based on these schemes have matured to a 

degree in which they can be deployed in real life applications. 

IBE allows asymmetric cryptography (encryption and signatures) without the burden of certificate 

administration typically associated with the creation of a Public Key Infrastructure (PKI). In 

CONVERGENCE, VDIs can be encrypted and decrypted without the need to establish a cumbersome PKI. 

Attribute Based Encryption makes it possible to map complex licenses to attributes. The basic idea of an 

Attribute Based Encryption scheme is to partially implement license enforcement by encrypting content 

(or more precisely a content key) according to determined attributes. In this way, only key holders with 

the attributes required by the encrypted content will be able to decrypt it. By contrast, conventional 

license checking can be bypassed by a fraudulent user who tampers with hardware and software 

components. 

7.2.2.3 Pseudonymous Access – “Restricted Identification” 

In the context of this report, we use Pseudonymous access to refer to the specific “Restricted 

Identification” technology used in the German Electronic Passport. The technology allows each 

registered user to derive pseudo-identities from a personal private key contained in his smart card. The 

same private key can be used to derive “sector”-specific pseudonyms. This means that an individual 

user’s pseudonym will always be the same in each individual sector, while his or her pseudonyms for 

disjoint sectors will be different and cannot be linked. 

Sectors need not restrict to local areas, but can be fields of applications, different online-providers of 

services, and so on. 

The method also allows revocation and blacklisting of pseudonyms. 

We propose to use this form of pseudonymous for the CONVERGENCE smart retailing trial. The main 

motivation for using it is to introduce data protection and improve privacy for users of the system. 

Customers can use their pseudonyms to order goods without revealing their true identity. Different 

shops will correspond to different sectors. This will prevent shops from cross-linking their data and 

prevent third parties from mining data from different shops to profile individual customers.  



 
  

 

D3.2 System architecture Page 135 of 175 

7.2.3 Smart Cards in CONVERGENCE 

Cryptographic software, or at least essential part of it, should run in a trustworthy environment. 

Naturally, the easiest assumption is to regard the entire network as safe, and to assume that registered 

devices (laptops, PCs, etc.), once checked, will remain secure devices and can be trusted. Unfortunately, 

the opposite is true. A network is anything but secure, and devices (even if initially correct) can be 

tampered with by fraudulent users, or manipulated by third parties. 

Many of these problems can be solved, or at least mitigated, by the use of smart cards as secure 

hardware modules. Smart card software is almost completely safe against tampering. This means that an 

attacker will find it very hard to access confidential content stored or processed on a well-designed 

system. In this way, the smart card serves as a reliable outpost for the service provider, which continues 

to control it, even though it is permanently in the hands of an end-user. 

On the other hand, smart cards can also contain secret information which is not available anywhere 

else, not even on the manufacturer’s or card issuer’s site. A typical example is a signature key: such keys 

are generated on-card, are unknown to any outside entity, and always remain in the physical possession 

of the card holder. The card holder can therefore be certain that no one can forge her signature without 

physical access to her smart card - not even the service provider or card manufacturer can do this. 

7.2.4 Cryptographic Protocols for specific Security Functional 

Requirements 

7.2.4.1 Key generation – User Registration 

Membership in the CONVERGENCE network scenarios requires a registration process. Registration is 

administrated by an Identity Provider, and comprises identification and cryptographic key generation. 

End-users will be equipped with smart cards containing confidential keys. On registration, each end-user 

receives a smart card containing at least the following key sets. 

A unique signature key pair 

The key shall be generated on the smart card itself, during registration, according to parameters agreed 

upon by CONVERGENCE. The secret part of the signature key shall be stored in such a way that it can 

never be read out of the smart card by any entity whatsoever. 



 
  

 

D3.2 System architecture Page 136 of 175 

The key shall be certified during registration
14

; the certificate (containing the public key part) shall be 

signed by the registration authority and stored on the smart card, as well as on a CONVERGENCE server. 

The generation of this key pair will be mandatory for each member wishing to use a smart card as 

secure repository. 

A unique encryption key pair 

A private-public key pair shall be assigned to each user, generated according to the same policy chosen 

for the signature key generation. However, the encryption key pair must not be identical to the 

signature key pair (it is not allowed to use the same key pair), but shall be generated completely 

independent from the aforementioned signature key pair. 

The key shall be certified during registration; and the certificate shall be stored on the member’s smart 

card, as well as on CONVERGENCE servers. 

We consider the generation of this key pair mandatory for each member wishing to use a smart card as 

secure repository. 

A unique group signature key 

During registration, each member’s smart card shall generate a random seed, securely transmitted to 

the group administration authority for computation of the complementary secret key part. Both parts 

constitute the private key of a member, and shall be safely stored on his or her smart card. 

Note that unlike the signature key and encryption key, we cannot insist that each member’s private 

group signature key be known only to the smart card. Instead, the group signature scheme requires the 

existence of an absolutely trustworthy “group master” administrating the group with a master secret 

key; see section above. 

A unique private key for Identity/Attribute Based Encryption 

As for the group signature key above, Identity Based Encryption or Attribute Based Encryption requires 

the private key for each member to be derived from a “master” key held by a trusted authority. The 

setup is similar to the setup for the group signature scheme. 

                                                           
14  Note that this requires a protocol allowing verification of the correctness and possession of the private key 
part without having access to it. A simple example of such a protocol consists in obtaining a signature over a random 
challenge of the verifiers choice under supervision. 



 
  

 

D3.2 System architecture Page 137 of 175 

7.2.5 Authentication of users 

Authentication is required by F.USER-AUTH-CONV, F.USER-AUTH-SERV, F.SERV-AUTH, F.PEER-AUTH, 

F.ENG-VDI and can be achieved through: 

a. Challenge-Response protocols involving signatures 

b. Key-agreement protocols which do not involve end-user’s signatures 

7.2.6 Integrity/Authenticity  

Integrity and authenticity are required by F.ENG-VDI, O.VDI-INT, O.VDI-AUTH, F.ENG-INT, F.ENG-AUTH 

and may be achieved through: 

a. Signing  

b. Use of hash-tables (e.g. containing identifier and hash-value) stored by a trustworthy service 

7.2.7 Licensing 

Licensing splits up into license issuance (F.TE-LIC-ISS) and license enforcement (F.TE-LIC-ENF). It may 

basically be achieved through: 

a. License Technology Engine, using REL 

b. On-card license validation, using Card Verifiable Certificates 

c. Attribute Based Encryption, mapping license conditions to attributes 

7.2.8 Example Protocols 

7.2.8.1 First example: Smart Card authentication using Key Agreement Scheme 

The smart card is equipped with a static asymmetric key pair. To achieve authentication, it proves 

possession of the secret key to a remote server. 

Entities involved: 

a. Remote peer 

b. End-user’s local client 

c. End-user’s Smart Card 

Protocol Flow: 

1. The smart card sends its static public key to the local client, along with a certificate. The local 

client transmits both of them to the remote peer. 

2. The remote peer generates an ephemeral asymmetric key pair, and sends the public key part to 

the local client. The local client transmits it to the smart card. 

3. Both the remote peer and the smart card compute a common secret key K through Diffie-

Hellman key agreement. 



 
  

 

D3.2 System architecture Page 138 of 175 

4. The smart card chooses a random nonce, and generates an authentication token derived from 

this nonce through a MAC (Message Authentication Code) using K. The smart card sends both 

nonce and token to the local client, which transmits it to the remote peer. 

5. The remote peer verifies the token by reproducing a MAC over the nonce with the same secret 

key K. 

Note: The benefit in using a smart card lies in the fact that the end-user’s private key remains within the 

smart card. The end-user need only have limited trust in the local client machine (e.g. a PC in an internet 

cafe). 

7.2.8.2 Second example: A Service Application’s authentication a Challenge-

Response 

The service application is equipped with a static asymmetric key pair. It authenticates towards an end-

user’s smart card by proving possession of the secret key. 

Entities involved: 

a. Service Application 

b. End-user’s local client 

c. End-user’s smart Card 

Protocol Flow: 

1. The service application sends a card-verifiable certificate (containing its public key) to the end-

user’s local client. – The local client transmits the certificate to the smart card for on-card 

validation. 

2. The smart card chooses a random challenge and sends it to the local client, which transmits it to 

the application server. 

3. The service application signs the challenge, and returns the signature to the local client, which 

transmits it to the smart card for verification 

4. The smart card verifies the signature in order to authenticate the service application. 

 

Note: The benefit in using a smart card lies in the fact that the end-user’s smart card can check the 

service application’s certificate, and validate the authentication. On the one hand, the end-user need 

only have limited trust in the local client machine (e.g. a PC in an internet cafe). On the other hand, the 

issuer of the smart card (a Service Provider) can enforce authentication even in an environment where he 

may mistrust a user’s local client (which may be the case if an end-user himself has an interest in 

manipulating his device). 

 



 
  

 

D3.2 System architecture Page 139 of 175 

8 Bibliography 

[1] Network layer solutions for a content-centric Internet. A. Detti, N. Blefari-Melazzi in 

“Trustworthy Internet”, Springer 2010. 

[2] A data-oriented (and beyond) network architecture. T. Koponen, M. Chawla, B.G. Chun, A. 

Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica in procs. of ACM SIGCOMM’07, 2007 

[3] Networking named content. V. Jacobson, D. K. Smetters, et al., Fifth ACM International 

Conference on emerging Networking EXperiments and Technologies (CoNEXT), 2009 

[4] On the Cache-and-Forward Network Architecture L. Dong, H. Liu, Y. Zhang, S. Paul, D. 

Raychudhuri in procs. of IEEE International Conference on Communications 2009, ICC 

2009 

[5] An Introduction to Petname Systems, Mark Steigler, available at 

http://www.skyhunter.com/marcs/petnames/IntroPetNames.html 

[6] An IPv4 Option to support Content Networking, A. Detti, S. Salsano, N. Blefari-Melazzi, 

Internet Draft, draft-detti-conet-ip-option-00, Work in progress, March 2011. 

[7] Networking named content, V. Jacobson, et al., in Proc. of ACM CoNEXT 2009 

[8] PURSUIT project website: www.fp7-pursuit.eu 

[9] 4WARD project website: www.4ward-project.eu 

[10] CONVERGENCE Project Deliverable D5.1 “Requirements and Initial Protocol Architecture” 

[11] TRIAD: a scalable deployable NAT-based internet architecture, D. Cheriton, M. Gritter, 

Technical Report (2000)” 

[12] Report from the IAB Workshop on Routing and Addressing, D. Meyer, L. Zhang, K. Fall, 

RFC 4984 

[13] D. Oran, “OSI IS-IS intra-domain routing protocol”, IETF RFC 1142 

[14] D. C. Verma “Content Distribution Networks”, Wiley-Interscience 

[15] T. Koponen, M. Chawla, B.G. Chun, et al.: “A data-oriented (and beyond) network 

architecture”, ACM SIGCOMM 2007 

[16] D. Smetters, V. Jacobson: “Securing Network Content”, PARC technical report, October 

2009 

[17] K Katsaros, G. Xylomenos, G. C. Polyzos: “MultiCache: An overlay architecture for 

information-centric networking”, Computer Networks, Elsevier, Volume 55, Issue 4, 10 

March 2011, Pages 936-947 

[18] S. Oueslati, J. Roberts, N. Sbihi: “Ideas on Traffic Management in CCN”, Information-

Centric Networking, Dagstuhl Seminar 

[19] The Many Faces of Publish-Subscribe, P.T. Eugster, P.A. Felber, R. Guerraoui, A. 

Kermarrec, in ACM Computing Surveys (CSUR), Volume 35, Issue 2, 2003 



 
  

 

D3.2 System architecture Page 140 of 175 

[20] W3C HTML 4.01 Specification, Section 12 – Links, 

1997.http://www.w3.org/TR/html401/struct/links.html 

[21] ISO/IEC 23006 – Information Technology – Multimedia Service Platform Technologies 

(MPEG-M) 

[22] ISO/IEC 21000-2 – Information technology -- Multimedia framework (MPEG-21) -- Part 2: 

Digital Item Declaration 

[23] ISO/IEC 21000-3 – Information technology -- Multimedia framework (MPEG-21) -- Part 3: 

Digital Item Identification 

[24] ISO/IEC 21000-4 – Information technology -- Multimedia framework (MPEG-21) -- Part 4: 

Intellectual Property Management and Protection Components 

[25] ISO/IEC 21000-5 – Information technology -- Multimedia framework (MPEG-21) -- Part 5: 

Rights Expression Language 

[26] ISO/IEC 21000-15 – Information technology -- Multimedia framework (MPEG-21) -- Part 

15: Event Reporting 

[27] ISO/IEC 21000-19 – Information technology -- Multimedia framework (MPEG-21) -- Part 

19: Media Value Chain Ontology 

[28] ISO/IEC 21000-20 – Information technology -- Multimedia framework (MPEG-21) -- Part 

20:Contract Expression Language 

[29] ISO/IEC 23006-1 – Information technology -- Multimedia Service Platform Technologies – 

Part 1 - Architecture 

[30] ISO/IEC 23006-2 – Information technology -- Multimedia Service Platform Technologies – 

Part 2 – MPEG Extensible Middleware API 

[31] ISO/IEC 23006-4 – Information technology -- Multimedia Service Platform Technologies – 

Part 4 – Elementary Services 

[32] ISO/IEC 23006-5 – Information technology -- Multimedia Service Platform Technologies – 

Part 5 – Service Aggregation 

[33] B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, New 

York, 1982 

[34] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, L. Massouli´e, Epidemic information 

dissemination in distributed systems, IEEE Computer 37 (2004) 60–67 

[35] R. Friedman, D. Gavidia, L. Rodrigues, A. C. Viana, S. Voulgaris, Gossiping on manets: the 

beauty and the beast, SIGOPS Operating Systems Review 41 (2007) 67–74 

[36] A. J. Ganesh, A. M. Kermarrec, L. Massoulié, Scamp: Peer-to-peer lightweight membership 

service for large-scale group communication, in: J. Crowcroft, M. Hofmann (Eds.), 

Networked Group Communication, volume 2233 of Lecture Notes in Computer Science, 

Springer Berlin /Heidelberg, 2001, pp. 44–55 



 
  

 

D3.2 System architecture Page 141 of 175 

[37] A. M. Kermarrec, L. Massoulié, A. J. Ganesh, Probabilistic reliable dissemination in large-

scale systems, IEEE Transactions on Parallel and Distributed Systems 14 (2003) 248–258 

[38] M. Muhr, R. Kern, M. Granitzer, Analysis of structural relationships for hierarchical cluster 

labeling, in: Proceeding of the 33rd international ACM SIGIR conference on Research and 

development in information retrieval, SIGIR ’10, ACM, New York, NY, USA, 2010, pp. 178–

185 

[39] Ahmed, R.; Boutaba, R.; "A Survey of Distributed Search Techniques in Large Scale 

Distributed Systems," Communications Surveys & Tutorials, IEEE , vol.13, no.2, pp.150-

167, Second Quarter 2011 

[40] S. Pantelopoulos, P. Gkonis: “Tools and Sample Applications Plans and Vision” 

CONVERGENCE public deliverable D7.1, July 2011. 

[41] The IMDB Mapping Movie Ontology by Gunnar Grimnes, 

http://www.csd.abdn.ac.uk/~ggrimnes/dev/imdb/IMDB.rdfs 

[42] National Retail Federation, http://www.nrf.com/ 

 



 
  

 

D3.2 System architecture Page 142 of 175 

9 ANNEX A - APIs for CoMid Technology Engines 

9.1 CDS TE API 

This section describes the application programming interface provided by the CDS TE. Table 10 describes 

the set of possible operations. Thanks to these primitives, the CDS TE allows its users to:  

- Load/unload ontologies 

- Load/unload dictionaries 

- Request ontology entities 

- Expand metadata 

- Get semantically equivalent metadata in a namespace 

- Get semantically equivalent query in a namespace 

- Fetch ontology 

- Fetch dictionary 

Table 10 - CDS TE API 

Service 
Operation 

Origin Output Description 

loadOntology(on
tologyURL) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User or event 
or some 
CoMid engine) 

success/failure This operation is called to load an ontology to 
the CDS. The objectives of this method are 

• to fetch the ontology 
• to validate the ontology 
• to parse the ontology 
• to store the ontology 
• to materialize the knowledge of the 

ontology 
• check knowledge base consistency 

unloadOntology(
ontologyURI) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User or event 
or some 
CoMid engine) 

success/failure This operation is called to unload an ontology 
from the CDS. The objectives of this method are 

• to remove any knowledge on entities of 
the ontologyURI namespace 

loadDictionary(di
ctionaryURL) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User or event 
or some 
CoMid engine) 

success/failure This operation is called to load an dictionary to 
the CDS. The objectives of this method are 

• to fetch the dictionary 
• to validate the dictionary 
• to parse the dictionary 
• to store the dictionary and 

ontologyURIs which it connects 
• to materialize the knowledge of the 

dictionary 
• check knowledge base consistency 

unloadDictionary
(ontologyURI_1, 
ontologyURI_2) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 

success/failure This operation is called to unload an dictionary 
from the CDS. The objectives of this method are 

• to remove any knowledge connecting 
entities of the ontologyURI_1 
namespace with entities of the 



 
  

 

D3.2 System architecture Page 143 of 175 

User or event 
or some 
CoMid engine) 

ontologyURI_2 namespace 

requestOntology
Entity(label, 
ontologyEntityTy
pe, ontologyURI) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User or event 
or some 
CoMid engine) 

RequestOntol
ogyEntityResul
tSet 

This operation is called to request ontology 
entities that are stored in the knowledge base of 
the CDS. The objectives of this method are : 

• to query knowledge base for ontology 
entities of ontologyEntityType with URIs 
inside the ontologyURI namespace and 
labels matching the specified label 

• to get the descriptions of the entities 
• return the entity URIs with their 

descriptions 
expandMetadata
(metadata) 

Any 
Orchestrator 
Engine 

Metadata This operation is called to expand provided 
metadata according to the knowledge that CDS 
has. The objectives of this method are 

• to validate the metadata 
• to parse the metadata 
• to materialize the metadata 
• to serialize the metadata 

getEquivalentMe
tadata(metadata, 
ontologyURI) 

Any 
Orchestrator 
Engine 

Metadata This operation is called to get semantically 
equivalent metadata in the knowledge model 
identified from the ontologyURI parameter. The 
objectives of this method are 

• to validate the metadata 
• to parse the metadata 
• to consult the knowledge base to 

provide semantically equivalent 
statements in the knowledge model 
identified by the ontologyURI 
namespace 

• to serialize the metadata 
getEquivalentQu
ery(query, 
ontologyURI) 

Any 
Orchestrator 
Engine 

Query This operation is called to get semantically 
equivalent query in the knowledge model 
identified from the ontologyURI parameter. The 
objectives of this method are 

• to validate the query 
• to parse the query 
• to consult the knowledge base to 

provide semantically equivalent criteria 
in the knowledge model identified by 
the ontologyURI namespace 

• to serialize the query 
getOntology(ont
ologyURI) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User or event 
or some 
CoMid engine) 

Ontology This operation is called to fetch the ontology 
stored in the CDS. The objectives of this method 
is : 

• return the ontology identified by the 
ontologyURI 

getDictionary(on
tologyURI_1, 
ontologyURI_2) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User or event 
or some 
CoMid engine) 

Dictionary This operation is called to fetch the dictionary 
stored in the CDS. The objectives of this method 
is : 

• return the dictionary that connects 
entities of the ontologyURI_1 
namespace with entities of the 
ontologyURI_2 namespace 



 
  

 

D3.2 System architecture Page 144 of 175 

 

9.2 CoNet TE API 

The CoNet TE API is described by a Java interface, whose methods are listed in the table below. 

Table 11 – CoNet TE API 

Service Operation Origin Output Description 

storeAndAdvertise (NID nid, int 
rType, String fileName) 

Any CoMid 
Engine 

Success/failure It stores a resource in the CoNet with a 
given NID, assuming that the localnode 
is a Conet node that acts as a permanent 
storage of the resource. It also requests 
the CoNet to perform CoNet advertising 
in order to associate the NID with the 
resource. 

storeAndAdvertise (NID nid, int 
rType, String fileName, NID 
hostingNid) 

Any CoMid 
Engine 

Success/failure It stores a resource in the CoNet with a 
given NID, providing the hosting NID to 
indicate where the resource has to be 
stored. It also requests the CoNet to 
perform CoNet advertising in order to 
associate the NID with the resource. 

revoke (NID nid, int rType) ; Any CoMid 
Engine 

Success/failure It revokes a content from the CoNet 
with a given NID, assuming that the local 
node is the CoNet node that acts as a 
storage of the resource. 

revoke (NID nid, int rType, NID 
hostingNid) ; 

Any CoMid 
Engine 

Success/failure It revokes a content from the CoNet 
with a given NID, providing the hosting 
NID to indicate where the resource was 
stored. 

get (NID nid, String localFileName) 
throws ConetIOException; 

Any CoMid 
Engine 

Success/failure It retrieves a resource from the CoNet 
corresponding to the input NID. It stores 
the named-resource in a local file. It is 
blocking, i.e. the method call does not 
exist until the resource is retrieved or an 
exception is thrown. 

advertiseSap (NID nid, SAPListener 
callBack); 

Any CoMid 
Engine 

Success/failure It advertises a SAP for receiving 
unNamed-data, providing the callBack to 
be invoked when unNamed-data are 
received. By default, the received data 
will be delivered as byte array. 

advertiseSap (NID nid, SAPListener 
callBack, int localDeliveryType) ; 

Any CoMid 
Engine 

success/failure It advertises a SAP for receiving 
unNamed-data, providing the callBack to 
be invoked when unNamed-data are 
received. The localDelivery type 
parameter allows to specify how the 
received unNamed-data can be handled 
(e.g. as a byte array or a string).  

sendToName (NID nid, byte [] 
unNamedData) ; 

Any CoMid 
Engine 

success/failure It sends unNamed-data towards a NID. 
The unNamed-data are expressed as a 
byte array. 

sendToName (NID nid, String 
unNamedDataAsString) ; 

Any CoMid 
Engine 

success/failure It sends unNamed-data towards a NID. 
The uNnamed-data are expressed as a 
String, this means that the receiving 
entity should be ready to receive the 
data as String. 



 
  

 

D3.2 System architecture Page 145 of 175 

sendToLocation (LID lid, byte [] 
unNamedData) ; 

Any CoMid 
Engine 

success/failure It sends unNamed-data towards a LID. 
The uNamed-data are expressed as a 
byte array. 
NB This method will not be 
implemented in the first release of the 
CoNet. 

sendToLocation (LID lid, String 
unNamedDataAsString) ; 

Any CoMid 
Engine 

success/failure It sends unNamed-data towards a 
LID<BR> the unNamed-data are 
expressed as a String this means that the 
receiving entity is ready to receive the 
data as String. 
NB This method will not be 
implemented in the first release of the 
CoNet. 

 

9.3 Digital Item TE 

This section describes the Application Programming Interface provided by the Digital Item TE. Table 12 
describes the set of possible operations. Thanks to these primitives, the Digital Item TE allows its users 
to:  
- Create a fully formed signed DID; 

- Create a didl:Item; 

- Create a didl:Descriptor; 

- Create a didl:Component: 

- Create a didl:Resource: 

- Add a base didl:Item to a DID; 

- Remove a base didl:Item from a DID; 

- Add a base didl:Descriptor to a DID; 

- Remove a base didl:Descriptor from a DID; 

- Add a child didl:Item to a parent didl:Item; 

- Remove a child didl:Item from a parent didl:Item; 

- Add a didl:Descriptor to a didl:Item; 

- Remove a didl:Descriptor from a didl:Item; 

- Add a didl:Component to a didl:Item; 

- Remove a didl:Component from a didl:Item; 

- Add a didl:Descriptor to a didl:Component; 

- Remove a didl:Descriptor from adidl:Component; 

- Add a didl:Resource to a didl:Component; 

- Remove a didl:Resource from adidl:Component; 

- Retrieve a specific didl:Item from aDID or fragment of it; 

- Retrieve a specific didl:Descriptor from aDID or fragment of it; 

- Retrieve a specific didl:Component from aDID or fragment of it; 

- Retrieve a specific didl:Resource from aDID or fragment of it; 



 
  

 

D3.2 System architecture Page 146 of 175 

Table 12 – Digital Item TE API 

Service Operation Origin Output Description 

createDID(descriptors,items,id,signa
tureData,declFilePath) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

The built 
didl:DIDL object 
which is the 
root of the DID. 

This operation is used to create a DI 
Declaration carrying object. The built 
object is serialized, signed and written to 
disk. 
descriptors is a collection of 
didl:Descriptor objects that affect 
information to the overall DID. 
items is a collection of all the didl:Item 
objects to be stored in the DID. 
id is the desired identifier of the DID. 
signatureData is an object carrying the 
necessary information for the 
production of the DIDs signature (i.e. 
hash calculation algorithm, ciphering 
algorithm, ciphering key). 
declFilePath is the location, within the 
file system, where the DID will be 
written. 

createItem(descriptors,items,id) CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

The built 
didl:Item object. 

This operation is used to create a 
didl:Item carrying object. 
descriptors is a collection of 
didl:Descriptor objects that affect 
information to didl:Item to be built. 
items is the collection of all the didl:Item 
objects to be contained within the 
didl:Item to be created. 
id is the desired identifier of the 
didl:Item. 

createDescriptor(content,id) CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

The built 
didl:Item object. 

This operation is used to create a 
didl:Descriptor carrying object. 
content is the text data to be contained 
in the didl:Descriptor to be built. 
id is the desired identifier of the 
didl:Descriptor. 

createComponent(resource,id) CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

The built 
didl:Component 
object. 

This operation is used to create a 
didl:Component carrying object. 
resource is a didl:Resource carrying 
object that will become a child of the 
didl:Component to be built. 
id is the desired identifier of the 
didl:Component. 

createResource(reference) CoMid 
client (an 
Applicatio

The built 
didl:Resource 
object. 

This operation is used to create a 
didl:Resource carrying object. 
reference is the value of the reference 



 
  

 

D3.2 System architecture Page 147 of 175 

n upon the 
action of a 
User) 

that points to the digital resource that is 
represented by the built didl:Resource. 
 

addItem(itemParent,item) CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation adds a didl:Item to the 
didl element (object) specified as its 
parent. 
itemParent is the object that is to have 
added to it, as a child, a the given 
didl:Item. It may be a didl:Container or a 
didl:Item. 
item the didl:Item to be added. 

removeItem(itemParent,itemID) CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation removes a didl:Item child 
from the a specified didl element 
(object). 
itemParent is the object that is to have 
removed from it a didl:Item child. It may 
be a didl:Container or a didl:Item. 
itemID the identifier of the didl:Item to 
be removed. 

addDescriptor(descriptorParent,des
criptor) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation adds a didl:Descriptor to 
the didl element (object) specified as its 
parent. 
descriptorParent is the object that is to 
have added to it, as a child, a the given 
didl:Descriptor. It may be a 
didl:Container, a didl:Item or a 
didl:Component. 
descriptor the didl:Descriptor to be 
added. 

removeDescriptor(descriptorParent, 
descriptorID) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation removes a didl:Descriptor 
child from the a specified didl element 
(object). 
descriptorParent is the object that is to 
have removed from it a didl:Descriptor 
child. It may be a didl:Container, a 
didl:Item or a didl:Component. 
descriptorID the identifier of the 
didl:Descriptor to be removed. 

addComponent(componentParent,c
omponent) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation adds a didl:Component to 
the didl element (object) specified as its 
parent. 
componentParent is the object that is to 
have added to it, as a child, a the given 
didl:Component. It must be a didl:Item. 
component the didl:Component to be 
added. 



 
  

 

D3.2 System architecture Page 148 of 175 

removeComponent(componentPare
nt, componentID) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation removes a 
didl:Component child from the a 
specified didl element (object). 
componentParent is the object that is to 
have removed from it a didl:Component 
child. It must be a didl:Item. 
componentID the identifier of the 
didl:Component to be removed. 

addResource(resourceParent, 
resource) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation adds a didl:Resource to 
the didl element (object) specified as its 
parent. 
resourceParent is the object that is to 
have added to it, as a child, a the given 
didl:Resource. It must be a 
didl:Component. 
resource the didl:Resource to be added. 

removeResource(resourceParent, 
resourceID) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

success/failure This operation removes a didl:Resource 
child from the a specified didl element 
(object). 
resourceParent is the object that is to 
have removed from it a didl:Resource 
child. It must be a didl:Component. 
resourceID the identifier of the 
didl:Resource to be removed. 

getDIDElement(didObject,elementID
) 

CoMid 
client (an 
Applicatio
n upon the 
action of a 
User) 

The specified 
didl object 

This operation retrieves the specified 
didl element from the given did or did 
sub-element. 
didObject is the did information 
container from which the specified didl 
element will be retrieved. It may be a 
didl:DIDL, didl:Container, didl:Item or a 
didl:Component. 
elementID the identifier of the desired 
didl element. 

 

9.4 Event Report TE API 

This section describes the Application-programming interface provided by the Event Report TE. Table 13 

describes the set of possible operations. Thanks to these primitives, the Event Report TE allows its users 

to:  

- Create ER-Rs; 

- Parse and Retrieve data from an ER-R; 

- Create Ers; 

- Notify users with Ers; 

- Parse and Retrieve data from an ER. 

 

 

 

 



 
  

 

D3.2 System architecture Page 149 of 175 

Table 13 - Event Report TE API 

Service 
Operation 

Origin Output Description 

CreateERR 
(ID_ERR, ID_VDI, 
ERR) 

CoMid client 
(e.g an 
Application 
upon the 
action of an 
User) 

success/failure This operation is used to create an Event Report 
Request for a VDI.  
ID_ERR is the identifier which uniquely identifies this 
ER-R; 
ID_VDI is the identifier of the VDI for which the ER-R is 
created; 
ERR is the Event Report Request, which will comprise, at 
least:  

• A description of the Event; 
• The syntax/format of the Event Report; 
• The recipient(s) of the Event Report; 
• Parameters related to delivery of the Event 

Report (e.g. transport mechanism, encryption, 
acknowledgements, etc.). 

 
After the Creation of the new ER-R, Event Reports are 
eligible to be generated upon the occurrence of events 
described in the ER-R. 

Get ERR (ID_ERR) CoMid client 
(e.g an 
Application 
upon the 
action of an 
User) 

ERR This operation is used to retrieved the ERR message 
using his unique identifier. 

CreateER (ID_ER, 
ID_ERR, ER) 

CoMid (e.g 
the 
Middleware 
upon the 
occurrence of 
an Event) 

success/failure This operation is used to create an Event Report based 
on a ER-R.  
ID_ER is the identifier which uniquely identifies this ER; 
ID_ERR is the identifier of the ER-Rupon which the ER is 
created; 
ER is the Event Report which will comprise of, at least:  

• A description of the format for delivery and of 
the access rights to the data of the Report; 

• The data of the Event Report; 
 

Notify User 
(ID_ER, ER, 
recipient) 

CoMid  success/failure This operation is used to send to an User an Event 
Report which was generated upon the occurrence of an 
Event (using the description from the Event Report 
Request).  
ID_ER is the identifier which uniquely identifies this ER; 
ER is the generated Event Report which will comprise of 
the data of the ER (see Table 2); 
Recipient is the address of the User 

Get ER (ID_ER) CoMid client 
(e.g an 
Application 
upon the 
action of an 
User) 

ER This operation is used to retrieved the ER message using 
his unique identifier. 

 

 



 
  

 

D3.2 System architecture Page 150 of 175 

9.5 Media Framework TE API 

The Media Framework TE API is described by a Java interface, whose methods are listed in the table 
below. 

Table 14– Media Framework TE API 

Service Operation Origin Output Description 

createResource (tools, srcLocation, 
destLocation) 
 

Any 
Orchestrator 
Engine 

success/failure This operation is used to create and 
handle a given resource. 
• tools: one or more tools (i.e. IPMP 

Tool) used to manipulate the 
resource (e.g. ciphering, filtering). 
They include description of: 
o control points involved 
o name or ID of the tool 
o one or a set of keys 

• srcLocation: where the resource 
handled is located 

• destLocation: where the resource 
handled will be located 

consumeResource(tools, 
inputStreamResource, mediaType, 
renderingObject); 

Any 
Orchestrator 
Engine 

success/failure This method is used to consume a given 
resource. 
• tools: one or more tools (i.e. IPMP 

Tool) used to manipulate the 
resource (e.g. ciphering, filtering). 
They include description of: 
o control points involved 
o name or ID of the tool 
o one or a set of keys 

• inputStreamResource: the 
inputStream of the resource 

• mediaType: what kind of media is 
handled 

• renderingObject: where the 
resource will be rendered (e.g. 
handler of a rendering window) 

setRenderingWindow(renderingO
bject) 
 

Any 
Orchestrator 
Engine 

success/failure This method is used to set a rendering 
window asynchronously 
• renderingObject: where the 

resource will be rendered (e.g. an 
handler of a rendering window) 

performUI (userInteraction) 
 

Any 
Orchestrator 
Engine 

success/failure This method is used to request an action 
on the resource (e.g. play, pause, stop, 
mute…) 
• userInteraction: the kind of 

operation to perform 

 

9.6 Match TE API 

This section describes the application programming interface provided by the Match TE. Table 15 

describes the set of possible operations. Thanks to these primitives, the Match TE allows its users to:  



 
  

 

D3.2 System architecture Page 151 of 175 

- Match publications with subscriptions 

- Match subscriptions with publications 

- Revoke publications from publications table 

- Revoke subscriptions from subscriptions table. 

 

Table 15 - Match TE API 

Service 
Operation 

Origin Output Description 

matchPubsWith(
S_VDI_ID, 
subscriptionQuer
y, 
expirationDate) 

Any 
Orchestrator 
Engine 

List<P-VDI-Id> This operation is called whenever a new subscription (S-
VDI) arrives to a peer. The objectives of this method are 

• to store the provided subscription query in the 
subscription tables, which is identified by the 
S_VDI_ID identifier, and record the expiration 
date of the subscription 

• perform the subscription query against the 
publication tables 

• return the publication ids (P-VDI-Id) that where 
matched. 

mathcSubsWith(
P_VDI_ID, 
publicationNetad
ata, 
expirationDate) 

Any 
Orchestrator 
Engine 

List<S-VDI-Id> This operation is called whenever a new publication (P-
VDI) arrives to a peer. The objectives of this method are 

• to store the provided publicationMetadata in 
the publication tables, which are identified by 
the P_VDI_ID identifier, and record the 
expirationDate of the publication 

• perform subscription Queries from the 
subscription tables against the newly received 
publication 

• return the subscription ids (S-VDI-Id) that 
where matched. 

revokeSubscripti
on(S_VDI_ID) 

Any 
Orchestrator 
Engine 

success/failure This operation is called whenever a subscription 
revocation procedure is performed. The objective of this 
method is 

• to remove any data recorded about the 
subscription identified with S_VDI_ID 

revokePublicatio
n(P_VDI_ID) 

Any 
Orchestrator 
Engine 

success/failure This operation is called whenever a publication 
revocation procedure is performed. The objective of this 
method is 

• to remove any data recorded about the 
publication identified with P_VDI_ID 

 

9.7 Metadata TE API 

This section describes the Application Programming Interface provided by the Metadata TE. Table 16 
describes the set of possible operations. Thanks to these primitives, the Metadata TE allows its users to:  

• Create: 

o mpeg7:CreationCoordinates elements; 

o mpeg7:CreationDescription elements: 

o mpeg7:Creator elements; 

o mpeg7:Genre elements; 



 
  

 

D3.2 System architecture Page 152 of 175 

o mpeg7:ParentalGuidanceelements; 

o mpeg7:TitleMedia elements. 

• Parse: 

o mpeg7:CreationCoordinates elements; 

o mpeg7:CreationDescriptionelements; 

o mpeg7:Creator elements; 

o mpeg7:Genre elements; 

o mpeg7:ParentalGuidance elements; 

o mpeg7:TitleMedia elements. 

 

Table 16 – Metadata TE API 

Service Operation Origin Output Description 

generateCreationCoordinatesEle
m (location, date) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The 
mpeg7:Creat
ionCoordina
tesElement/
null 

This operation is used to create an 
mpeg7:CreationCoordinatesElement. 
location is data structure containing all the 
necessary data to describe a specific location. 
The internals of said description are in 
accordance with the type mpeg7:PlaceType. 
date is data structure containing all the 
necessary data to describe a specific time 
instant. The internals of said data structure 
are in accordance with the type 
mpeg7:TimeType. 

generateCreationDecriptionEle
m 
(creation,classification,relatedMa
terial) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The 
mpeg7:Creat
ionDescripti
onElement/
null 

This operation is used to create an 
mpeg7:CreationDescriptionElement. 
creation is data structure containing all the 
necessary data to describe a specific media 
object creation event. The internals of said 
description are in accordance with the type 
mpeg7:CreationType. 
classification is data structure containing all 
the necessary data to classify a specific media 
object (genre, language, etc). The internals of 
said data structure are in accordance with the 
type mpeg7:ClassificationType. 
relatedMaterial is data structure containing 
information related to the 
mpeg7:CreationDescription element to be 
generated. The internals of said data 
structure are in accordance with the type 
mpeg7:RelatedMaterialType. 

generateCreatorElem (character, 
instrument) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The 
mpeg7:Creat
orElement/n
ull 

This operation is used to create an 
mpeg7:CreatorElement. 
character is data structure containing all the 
necessary information to identify a human 
person. The internals of said data structure 
are in accordance with the type 
mpeg7:PersonNameType. 
instrument is data structure containing all the 
necessary information to describe a media 



 
  

 

D3.2 System architecture Page 153 of 175 

object production tool. The internals of said 
data structure are in accordance with the 
type mpeg7:CreationToolType. 

generateGenreElem 
(genre,isPrimaryGenre) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The 
mpeg7:Genr
eElement/n
ull 

This operation is used to create an 
mpeg7:GenreElement. 
genre is the genre’s designation. 
isPrimaryGenre is a boolean value, which, if 
true, signals that this mpeg7:Genre element 
represents the primary genre of some media 
object. 

generateParentalGuidanceElem 
(parentalRating,minimumAge,reg
ion) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The 
mpeg7:Pare
ntalGuidanc
eElement/n
ull 

This operation is used to create an 
mpeg7:ParentalGuidanceElement. 
parentalRating is data structure containing all 
the necessary information to qualify the 
allowed audience type rating of a media 
object. The internals of said data structure 
are in accordance with the type 
mpeg7:ControlledTermUseType. 
minimumAge is a non-negative integer. 
region is a string defining the region of 
validity of the mpeg7:ParentalGuidance 
element to be created. It is defined in 
accordance with type mpeg7:regionCode. 

generateTitleMediaElem 
(titleImage,titleVideo,titleAudio) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The 
mpeg7:Title
MediaEleme
nt/null 

This operation is used to create an 
mpeg7:TitleMediaElement. 
titleImage is data structure containing all the 
necessary informationto locate the image 
which serves as title for some media object. 
The internals of said data structure are in 
accordance with the type 
mpeg7:ImageLocatorType. 
titleVideo is data structure containing all the 
necessary informationto locate the video 
segment which serves as title for some media 
object. The internals of said data structure 
are in accordance with the type 
mpeg7:TemporalSegmentLocatorType. 
titleAudio is data structure containing all the 
necessary informationto locate the audio 
segment which serves as title for some media 
object. The internals of said data structure 
are in accordance with the type 
mpeg7:TemporalSegmentLocatorType. 

getCreationCoordinatesData() CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The data 
structures 
location and 
date. 

This operation is used to retrieve the internal 
data of an 
mpeg7:CreationCoordinatesElement. 
location is data structure containing all the 
necessary data to describe a specific location. 
The internals of said description are in 
accordance with the type mpeg7:PlaceType. 
date is data structure containing all the 
necessary data to describe a specific time 
instant. The internals of said data structure 
are in accordance with the type 
mpeg7:TimeType. 

getCreationDecriptionData() CoMid client 
(an 
Application 
upon the 
action of a 

The data 
structures 
creation, 
classification 
and 

This operation is used to retrieve the internal 
data of an 
mpeg7:CreationDescriptionElement. 
creation is data structure containing all the 
necessary data to describe a specific media 



 
  

 

D3.2 System architecture Page 154 of 175 

User) relatedMate
rial. 

object creation event. The internals of said 
description are in accordance with the type 
mpeg7:CreationType. 
classification is data structure containing all 
the necessary data to classify a specific media 
object (genre, language, etc). The internals of 
said data structure are in accordance with the 
type mpeg7:ClassificationType. 
relatedMaterial is data structure containing 
information related to the 
mpeg7:CreationDescription element to be 
generated. The internals of said data 
structure are in accordance with the type 
mpeg7:RelatedMaterialType. 

getCreatorData() CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The data 
structures 
character 
and 
instrument. 

This operation is used to retrieve the internal 
data of an mpeg7:CreatorElement. 
character is data structure containing all the 
necessary information to identify a human 
person. The internals of said data structure 
are in accordance with the type 
mpeg7:PersonNameType. 
instrument is data structure containing all the 
necessary information to describe a media 
object production tool. The internals of said 
data structure are in accordance with the 
type mpeg7:CreationToolType. 

getGenreData () CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The data 
structures 
genre and 
isPrimaryGe
nre. 

This operation is used to retrieve the internal 
data of an mpeg7:GenreElement. 
genre is the genre’s designation. 
isPrimaryGenre is a boolean value, which, if 
true, signals that this mpeg7:Genre element 
represents the primary genre of some media 
object. 

getParentalGuidanceData () CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The data 
structures 
parentalRati
ng, 
minimumAg
e and 
region. 

This operation is used to retrieve the internal 
data of an mpeg7:ParentalGuidanceElement. 
parentalRating is data structure containing all 
the necessary information to qualify the 
allowed audience type rating of a media 
object. The internals of said data structure 
are in accordance with the type 
mpeg7:ControlledTermUseType. 
minimumAge is a non-negative integer. 
region is a string defining the region of 
validity of the mpeg7:ParentalGuidance 
element to be created. It is defined in 
accordance with type mpeg7:regionCode. 

getTitleMediaData() CoMid client 
(an 
Application 
upon the 
action of a 
User) 

The data 
structures 
titleImage, 
titleVideo 
and 
titleAudio. 

This operation is used to retrieve the internal 
data of anmpeg7:TitleMediaElement. 
titleImage is data structure containing all the 
necessary informationto locate the image 
which serves as title for some media object. 
The internals of said data structure are in 
accordance with the type 
mpeg7:ImageLocatorType. 
titleVideo is data structure containing all the 
necessary informationto locate the video 
segment which serves as title for some media 
object. The internals of said data structure 
are in accordance with the type 
mpeg7:TemporalSegmentLocatorType. 



 
  

 

D3.2 System architecture Page 155 of 175 

titleAudio is data structure containing all the 
necessary informationto locate the audio 
segment which serves as title for some media 
object. The internals of said data structure 
are in accordance with the type 
mpeg7:TemporalSegmentLocatorType. 

 

9.8 MPEG-21 File TE API 

This section describes the Application Programming Interface provided by the MPEG-21 File TE. Table 
17 describes the set of possible operations. Thanks to these primitives, the MPEG-21 File TE allows its 
users to:  
 
- Create MPEG-21 files/archives; 

- Add metadata files to already existing MPEG-21 files/archives; 

- Add resource (media) files to already existing MPEG-21 files/archives; 

- Replace files within already existing MPEG-21 files/archives; 

- Remove files from within already existing MPEG-21 files/archives; 

- Obtain a manifest of all the internal contents of an MPEG-21 file/archive. 

- Obtain a specific inner component of an MPEG-21 file/archive. 

 

Table 17 – MPEG-21 File TE API 

Service Operation Origin Output Description 

createMPEG21File(mpeg21FileNa
me, didFileLocalPath, 
metadataFilesLocalPaths, 
resourceFilesLocalPaths) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

local path of 
the produced 
MPEG-21 
file/null 

This operation is used to create an MPEG-
21 file which is stored on the local disk. 
mpeg21FileName is the desired name for 
the MPEG-21 file to be produced 
didFileLocalPaththe local path of the DID 
file to be added to the MPEG-21 file to be 
produced; 
metadataFilesLocalPaths is a collection 
object containing the local paths of all the 
metadata files to be included in the 
MPEG-21 file; 
resourceFilesLocalPaths – is a collection 
object containing the local paths of all the 
resource (media) files to be included in 
the MPEG-21 file; 

addMetadataToMPEG21File(mpeg
21FileLocalPath, 
newMetadataFilesLocalPaths) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

local path of 
new version of 
the MPEG-21 
file/null 

This operation is used to add one or more 
metadata files to an already existing 
MPEG-21 file. The old version (on the local 
disk), of the MPEG-21 file will be replaced 
with its new version, containing the new 
file(s); 
mpeg21FileLocalPath is the local path of 
the MPEG-21 file/archive to which the 
new metadata files are to be added 
newMetadataFilesLocalPathsis a 
collection object containing the local 



 
  

 

D3.2 System architecture Page 156 of 175 

paths of the metadata files that are to be 
added to the MPEG-21 file/archive; 

addResourceToMPEG21File 
(mpeg21FileLocalPath, 
newResourceFilesLocalPaths) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

local path of 
new version of 
the MPEG-21 
file/null 

This operation is used to add one or more 
resource files to an already existing 
MPEG-21 file. The old version (on the local 
disk), of the MPEG-21 file will be replaced 
with its new version, containing the new 
file(s); 
mpeg21FileLocalPath is the local path of 
the MPEG-21 file/archive to which the 
new resource files are to be added; 
newResourceFilesLocalPaths is a collection 
object containing the local paths of the 
files that are to be added to the MPEG-21 
file/archive; 

replaceMPEG21FileComponent(m
peg21FileLocalPath, 
replacingComponentFileLocalPath, 
replacedComponentFileName) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

local path of 
new version of 
the MPEG-21 
file/null 

This operation is used to replace an 
internal component (file) of an already 
existing MPEG-21 file. The old version (on 
the local disk), of the MPEG-21 file will be 
replaced with its new version, containing 
the new file. The added component file’s 
compression status will be the same as 
that of the replaced file. 
mpeg21FileLocalPath is the local path of 
the MPEG-21 file/archive which is going to 
have one of its components altered; 
replacingComponentFileLocalPath is the 
local path of the replacing component file; 
replacedComponentFileName is the name 
of the file (contained inside the MPEG-21 
file), that is to be replaced; 

removeFromMPEG21File(mpeg21
FileLocalPath, removedFileName) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

local path of 
new version of 
the MPEG-21 
file/null 

This operation is used to remove an 
internal component (file) of an already 
existing MPEG-21 file. The old version (on 
the local disk), of the MPEG-21 file will be 
replaced with its new version. 
mpeg21FileLocalPath is the local path of 
the MPEG-21 file/archive from which a 
component file will be removed; 
removedFileName is the name of the file 
that is to be removed from the MPEG-21 
file/archive; 

getMPEG21FileContentManifest(
mpeg21FileLocalPath) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

file 
manifest/null 
 

This operation is used to obtain a list of all 
of an MPEG-21 archive’s inner files; 
mpeg21FileLocalPath is the local path of 
the MPEG-21 file/archive from which a 
manifest is to be obtained; 

getMPEG21FileComponent 
(mpeg21FileLocalPath, 
mpeg21FileComponentID) 

CoMid client 
(an 
Application 
upon the 
action of a 
User) 

the specified 
inner 
component 
(file) of an 
MPEG-21 
file7null 

This operation is used to obtain an object 
representing the specified MPEG-21 file’s 
inner file- 
mpeg21FileLocalPath (string) – the local 
path of the MPEG-21 file/archive from 
which a component file will be retrieved; 
mpeg21FileComponentID (string) – the 
identifier of the desired inner component 
of an MPEG-21 file;; 

 



 
  

 

D3.2 System architecture Page 157 of 175 

9.9 Overlay TE API 

This section describes the Application Programming Interface provided by the Overlay TE. 

9.9.1 MessageCreator 

Operation Origin Output Description 
createMessage(h
eader, payload) 

CoMid client (e.g an 
Application upon 
the action of an 
User or event or 
some CoMid 
engine) 

Overlay 
message 

This operation creates a message to be circulated 
in the Overlay, formatted according to Figure 29. 

addHeader(mess
age, header) 

CoMid client (e.g an 
Application upon 
the action of an 
User or event or 
some CoMid 
engine) 

Overlay 
message 

This operation adds the header part of the 
message. 

addPayload(mes
sage, payload) 

CoMid client (e.g an 
Application upon 
the action of an 
User or event or 
some CoMid 
engine) 

Overlay 
message 

This operation adds the payload part of the 
message. 

9.9.2 MessageKeeper 

Operation Origin Output Description 
bufferMessage(o
verlayMessage) 

CoMid (e.g some 
CoMid engine) 

Success/failure This operation stores the received overlay 
message in the peer’s buffer. 

getBufferedMess
ages() 

CoMid (e.g some 
CoMid engine) 

List of all the 
buffered 
messages 

This operation returns a list with all the 
messages contained in this buffer. 

unbufferMessag
e(message) 

CoMid (e.g some 
CoMid engine) 

Success/failure This operation removes all messages matching 
the given parts of this message (if a part is 
missing, then it is not checked) from the buffer. 

9.9.3 MessageParser 

Operation Origin Output Description 
getMessageHead
er(message) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Message 
header 

This operation returns the header part of the 
message. 

getMessagePaylo
ad(message) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Message 
payload 

This operation returns the payload part of the 
message. 

9.9.4 PropagationMessageHandler 

Operation Origin Output Description 
sendPropagation
Message(overlay

CoMid (e.g 
some CoMid 

Success/failure This operation sends an overlay to a remote peer. The 
sender parses the payload to check whether this is a 



 
  

 

D3.2 System architecture Page 158 of 175 

Message) engine) publication or a subscription VDI and, then, extracts the 
corresponding service endpoint of the remote peer 
from the registry. 

recvPropagation
MessageDaemon
() 

Overlay Success/failure This operation runs the services daemons for receiving 
publication and subscription VDIs. Upon receipt, the 
messages are consumed. 

consumePropaga
tionMessage(ove
rlayMessage) 

Overlay Success/failure This operation parses the received message, checks 
whether this is a publication or a subscription VDI and, 
then, stores it in the corresponding buffer. 

9.9.5 RegistryCreator 

Operation Origin Output Description 
registerToFractal
(fractalId) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Success/failure This operation initiates the registration 
procedure of a peer to a fractal. 

notifyNeighbors(
) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Success/failure This operation notifies the other fractal 
members of this peer’s presence. 

advertiseRegistry
() 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Success/failure This operation advertises the registry held by this 
peer to the network. 

updateRegistry() CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Registry This operation retrieves the currently advertised 
registry from the network and updates the 
peer’s one. 

9.9.6 RegistryParser 

Operation Origin Output Description 
parseFractalRegi
stry(registry) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Success/failure This operation parses the fractal registry and 
creates internal structures to handle it. 

getPublicationSe
rviceEndpoints() 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

List of 
publication 
service 
endpoints 

This operation reads the registry and returns a 
list with all the publication service endpoints. 

getPublicationSe
rviceEndpoints() 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

List of 
subscription 
service 
endpoints 

This operation reads the registry and returns a 
list with all the subscription service endpoints. 

getPublicationSe
rviceEndpoints(p
eerId) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

The 
publication 
service 
endpoint of 
the given peer. 

This operation reads the registry and returns the 
publication service endpoint of the given peer. 

getSubscriptionS
erviceEndpoints(

CoMid client (e.g an 
Application upon the 

The 
subscription 

This operation reads the registry and returns the 
subscription service endpoint of the given peer. 



 
  

 

D3.2 System architecture Page 159 of 175 

peerId) action of an User or 
event or some CoMid 
engine) 

service 
endpoint of 
the given peer. 

insertPeerToRegi
stry(peerId, 
publicationServic
eEndpoint, 
ubscriptionServic
eEndpoint, 
leaveDate) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Success/failure This operation inserts a peer into the local 
registry. 

removePeerFrom
Registry(peerId, 
publicationServic
eEndpoint, 
ubscriptionServic
eEndpoint) 

CoMid client (e.g an 
Application upon the 
action of an User or 
event or some CoMid 
engine) 

Success/failure This operation removes a peer from the local 
registry. 

 

9.10 REL TE API 

This section describes the application programming interface provided by the REL TE. The sections 

below describes the set of possible operations. 

9.10.1 Rights expression creation 

9.10.1.1 LicenseCreator 

Operation Origin Output Description 
setLicenseID(LicenseID) Any CoMid 

engine 
Success/failure Calling this method results in adding an 

identifier to the license that will be 
generated. 

setEncryptedLicense() Any CoMid 
engine 

Success/failure Sets the encrypted license property of a 
license 

addIssuer (Issuer issuer) Any CoMid 
engine 

Success/failure Calling this method results in adding 
anissuer to the license that will be 
generated. 

addGrants(List<Grant> grants) Any CoMid 
engine 

Success/failure Calling this method results in adding a 
Grant to the license that will be 
generated. 

setLicenseSignature(Signature) Any CoMid 
engine 

Success/failure Calling this method results in 
settingthesignature of the license that 
will be generated 

setInvetory(Inventory inventory) Any CoMid 
engine 

Success/failure Calling this method results in settingthe 
inventory to the license that will be 
generated. 

createFile(String Filepath) Any CoMid 
engine 

License file Creates a License file 

generateString() Any CoMid 
engine 

xml 
representation 

of a license 

Gives the xml representation of a 
license 

9.10.1.2 IssuerCreator 

Operation Output Description 
setPrincipal(Principal principal) Success/failure Sets a principal 



 
  

 

D3.2 System architecture Page 160 of 175 

setSignature(Signature signature) Success/failure Sets signature 
setDetails(IssuerDetails issuerDetails) Success/failure Returns issuer details, like time of issue 

9.10.1.3 IdentityHolderCreator 

Operation Output Description 
setIDValue(String idValue) Success/failure Sets an ID value for the identiy holder 
setIDSystem(String idSystem) Success/failure Sets an ID value for the system issuing the 

license 

9.10.1.4 GrantCreator 

Operation Output Description 
setRight (Right right) Success/failure Sets the right of the grant 
setPrincipal(Principal principal) Success/failure Sets the principal of the grant 
setConditions(List<Condition>) Success/failure Sets the conditions that should be met in order 

for the grant to be valid 
setResource(Resource resource) Success/failure Sets the resource of the grant 
setDIreference(DIreference diReference) Success/failure Sets the reference of a grant to a diital item 
setEncryptedContent(EncryptedContent 
content) 

Success/failure Sets encryption on a grant 

9.10.1.5 DigitalResourceCreator 

Operation Output Description 
setNonSecureReferenceURI(String URI) Success/failure Sets the non secure reference URI to access the 

digital resource. 
setSecureIndirect(String URI) Success/failure Sets a secure reference URI to access the digital 

resource. 

9.10.1.6 KeyHolderCreator 

Operation Output Description 
setKeyInfo(KeyInfo keyInfo) Success/failure Sets the info of a key. 
setKeyHolderType(KeyHolderType 
keyHolderType) 

Success/failure Sets the type of a keyholder. 

9.10.1.7 ProtectedResourceCreator 

Operation Output Description 
setEncryptedKey(MXMObject 
encryptedKeyObj) 

Success/failure Sets an encrypted key 

setEncryptedData(MXMObject 
encryptedData) 

Success/failure Sets an encrypted data 

9.10.2 Rights expression parsing 

9.10.2.1 LicenseParser 

Operation Origin Output Description 
getLicenseID() Any CoMid 

engine 
String Returns the license ID 

getInventory() Any CoMid 
engine 

Inventory Returns the inventory of a license 

getIssuer() Any CoMid Issuer Returns the issuer of a license 



 
  

 

D3.2 System architecture Page 161 of 175 

engine 
getEncryptedLicense() Any CoMid 

engine 
Encrypted 

License 
Returns the encrypted content of a 
license 

getLicenseSignature() Any CoMid 
engine 

Signature Returns the signature of a license 

getGrants() Any CoMid 
engine 

List of Grants Returns the list of Grants expressed in 
the license 

parse(FilePath) Any CoMid 
engine 

License object Parses a license 

9.10.2.2 IssuerParser 

Operation Origin Output Description 
getPrincipal() Any CoMid 

engine 
Principal Returns the Principal 

getSignature() Any CoMid 
engine 

Signature Returns the Signature 

getDetails() Any CoMid 
engine 

Issuer details Returns issuer details, like time of issue. 

9.10.2.3 IdentityHolderParser 

Operation Origin Output Description 
getIDValue() Any CoMid 

engine 
String Returns the ID value of the identity 

holder 
getIDSystem() Any CoMid 

engine 
String Returns the ID value of the system that 

issued the license 

9.10.2.4 GrantParser 

Operation Origin Output Description 
getPrincipal() Any CoMid 

engine 
Principal Returns the Principal of the Grant 

getResource() Any CoMid 
engine 

Resource 
object 

Returns the resource object of a Grant 

getEncryptedContent() Any CoMid 
engine 

EncryptedCon
tent 

Returns the EncryptedContent of a 
Grant 

getConditions() Any CoMid 
engine 

List<Condition
> 

Returns the conditions that should be 
met in order to the grant to be valid 

getRight() Any CoMid 
engine 

Right Returns the right that the grant grants 
to the principal 

geDIReference() Any CoMid 
engine 

DIReference Returns the reference of a grant to a 
digital item 

9.10.2.5 DigitalResourceParser 

Operation Origin Output Description 
getNonSecureReferenceURI() Any CoMid 

engine 
URI Returns the non secure reference URI to 

access the digital resource that is stated 
in the license 

getSecureIndirect() Any CoMid 
engine  

URI Returns the secure reference URI to 
access the digital resource that is stated 
in the license 



 
  

 

D3.2 System architecture Page 162 of 175 

9.10.2.6 KeyHolderParser 

Operation  Output Description 
getKeyInfo() Any CoMid 

engine 
KeyInfo Returns info of the key. 

getKeyHolderType() Any CoMid 
engine 

KeyholderType Returns the type of a keyholder 

9.10.2.7 ProtectedResourceParser 

Operation Origin Output Description 
getEncryptedData(key) Any CoMid 

engine 
EncryptedData Returns the encrypted data 

getEncryptedKey(String keyType) Any CoMid 
engine 

String Returns the encrypted key 

9.10.3 Authorization Manager 

Operation Origin Output Description 
verifyGrant(Grant licenseGrant, 
MXMObject principal,Right right, 
MXMObject resource) 

Any CoMid 
engine 

Success/failure Verifies whether the Grant in the 
supplied license grants rights over the 
resource or the principal specified in the 
query as well as if the Grant grants the 
Right right. 

authorise(License license, License 
query) 

Any CoMid 
engine 

Success/failure This method receives a License and a 
Query and returns the result of the 
validation 

verifyRight (Grant licenseGrant, 
Right right) 

Any CoMid 
engine 

Success/failure Verifies a specific right over the license 
Grant 

verifyResource(Grant licenseGrant, 
MXMObject resource) 

Any CoMid 
engine 

Success/failure Verifies a specific resource 

9.10.4 Condition Manager 

Operation Origin Output Description 
verifyConditions (List<MXMObject> 
conditions, QName currentCountry, 
QName currentRegion, boolean 
isCommercial) 

Any CoMid 
engine 

Success/failure Verifies if a list of conditions are met 

verifyValidityInterval(ValidityInterval 
validityInterval) 

Any CoMid 
engine 

Success/failure Verifies if the license period is within 
the specified interval 

verifyLocation (Location 
licenseLocation, QName 
currentCountry, QName 
currentRegion) 

Any CoMid 
engine 

Success/failure Verifies the country or region conditions 

 

9.11 Security TE API 

The security TE API is extracted from the MPEG specification available at: 

http://mxm.wg11.sc29.org/docs/api/java/d2/da3/namespaceorg_1_1iso_1_1mpeg_1_1mxm_1_1engin

e_1_1securityengine.html 



 
  

 

D3.2 System architecture Page 163 of 175 

As clarified in section 7.2.1, the inclusion of this API in the ANNEX is not meant as a commitment to 

implement it in this exact status. Rather it is meant to document the starting point of the analysis to 

design a Security TE API tailored to the needs of the CONVERGENCE system. In particular, we have 

started pointing out some issues that CONVERGENCE should address, as reported in section 9.11.2. 

In the package org.iso.mpeg.mxm.engine.securityengine we find the following interfaces and classes: 

interface  CertificateManager 

interface  KeyManager 

interface  SecureDeviceManager 

interface  SecureRepositoryManager 

class  SecurityEngine 

interface  SecurityEngineKeys 

interface  SecurityInfoCreator 

interface  SecurityInfoParser 

9.11.1 CertificateManager Interface 

Classes implementing this interface are responsible for providing a number of security-related 

functionalities such as the generation of private/public keys, import and export of public key and 

certificates in various formats, of cryptographic services, secure storage and retrieval of information, 

generation of keys, signature calculation and validation, etc. 

Operation Description 
boolean isAlgorithmSupported (String 
algorithmURI)  

This method is used to query whether an object implementing 
this interface supports a certain algorithm 
Parameters: 
algorithmURI  the URI identifying a cryptographic algorithm. 

MXMObject generateKeyPair (String 
algorithm) throws 
CertificateManagerException  

Generate a key pair (a private key and associated public key) 
using the given algorithmParameters: 
algorithm  - algorithm to be used with this key 
pairReturns: 
a key pair 

void createUserEntry (String keyAlias, String 
password, MXMObject privateKeyEntry, 
MXMObject parameters) throws 
CertificateManagerException  

This method is used to add a new user entry in the KeyStore. If 
the privateKeyEntry parameter is null, a new public/private key 
pair and a self certificate will be created. 
Parameters: 
keyAlias  The alias used to Store the new entry in the KeyStore 
password  The password for retrieving the entry in the 
KeyStore associated to the alias specified 
privateKeyEntry  the PrivateKeyEntry to store in the KeyStore 
associated to the username. If this parameter is null, a test 
privateKeyEntry will be generated. 
parameters  A set of parameters which may be used to 
create the user entry 

boolean testCredentials (String keyAlias, 
String password) throws 
CertificateManagerException  

This method is used to test if the username and password 
entered by the user is correct. 
Parameters: 



 
  

 

D3.2 System architecture Page 164 of 175 

keyAlias  the KeyAlias to be tested 
password  the password to be tested 

MXMObject getKeyInfo (String keyAlias, 
String password) throws 
CertificateManagerException  

This method is used to obtain the certificate associated to a 
certain keyAlias as an REL Principal 
Parameters: 
keyAlias  the keyAlias for which the Principal is sought 
password  the password necessary to retrieve the data 
from the KeyStore 

boolean verifyKeyInfo (String keyAlias, 
String password, MXMObject keyInfo) 
throws CertificateManagerException, 
SecurityEngineException 

 

String importCertificate (String keyAlias, 
String password, FileInputStream fis) 
throws CertificateManagerException 

This method is employed to import a certificate in the certificate 
repository managed by the SecurityEngine. 
Parameters: 
keyAlias  the KeyAlias associated to the certificate which is going 
to be imported. In case it is null, the CertificateManager will 
generate one using the certificate data and return it. 
password  the password to access the certificate 
repository 
fis  the FileInputStream associated to the file where the 
Certificate to be imported resides 
Returns: 
the same keyAlias given in input if not null, or else a keyAlias 
generated from the certificate data. 

MXMObject getCertificate (String keyAlias, 
String password) throws 
CertificateManagerException 

This method is employed to retrieve the certificate associated to 
a certain keyAlias from the certificate repository 
Parameters: 
alias  the alias to which the sought Certificate is bound 
password  the password to access the certificate 
repository 
Returns: 
the certificate corresponding to the keyAlias specified 

void deleteCertificate (String keyAlias, 
String password) throws 
CertificateManagerException 

This method is employed to delete a certificate associated to a 
certain alias from the certificate repository 
Parameters: 
keyAlias  the alias associated to the certificate to be deleted 
password  the password to access the certificate 
repository 

 

9.11.2 KeyManagerInterface 

Classes implementing this interface are responsible for providing a number of security-related 

functionalities such as the generation of symmetric keys, providing generation of keys, hashes, signature 

calculation and validation, etc. 

As regards the integration of this interface in the CONVERGENCE project, we observe an issue with the 

verify Signature operation. The parameters and description suggest that the verification process for a 

given digital signature consists of its recreation and subsequent comparison to the given signature. 

While this might make some sense for "symmetric signatures" (which are rather keyed MACs), it is not 

suitable for true digital (asymmetric) signatures for a couple of reasons. To begin with, a verifier does 

not (or better must not) dispose of the private signature key with which the signature has been 

generated, and therefore cannot recreate it. Secondly, even if he could, two signatures - on exactly the 



 
  

 

D3.2 System architecture Page 165 of 175 

same data, issued under exactly the same algorithm, using exactly the same key - need not be equal 

(may indeed appear like two totally different values!). The reason for the latter phenomenon lies in the 

fact that many signature schemes today (unlike RSA PKCS1#1 v1.5) are probabilistic. These 

considerations will drive the adaptation/extension of this interface towards the needs of 

CONVERGENCE. 

 

Operation Description 
byte [] 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.decrypt ( byte[] data, String 
algorithm, String keyAlias, String password ) 
throws KeyManagerException 

This method is used to asymmetrically decrypt the data in input 
using the private key associated to a certain key alias given in 
input. 
Parameters: 
data the data to be decrypted 
algorithm the algorithm to be used to decrypt the data 
keyAlias the alias associated to the key to be used decrypt the 
data in input 
password the password to access the certificate repository 
Returns: 
the decrypted data 
Exceptions: 
KeyManagerException 

byte [] 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.encrypt ( byte[] data, byte[] 
encryptionKey, String algorithm ) throws 
KeyManagerException 

This method is used to symmetrically encrypt the data in input 
with a given symmetric key given in input. 
Parameters: 
data the data to be encrypted 
encryptionKey the key to be used to encrypt the data 
algorithm the algorithm to be used to encrypt the data 
Returns: 
the encrypted data as a byte array 
Exceptions: 
KeyManagerException 

byte [] 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.encrypt ( byte[] data, String 
algorithm, String keyAlias, String password ) 
throws KeyManagerException 

This method is used to asymmetrically encrypt the data in input 
with a given algorithm using the public key from a certificate 
stored in the keyStore and identified by a keyAlias. 
Parameters: 
data the data to be encrypted 
algorithm the algorithm to be used to encrypt the data 
keyAlias an alias associated to the key to be used to encrypt the 
data 
password the password for accessing the certificate repository 
Returns: 
the encrypted data as a byte array 
Exceptions: 
KeyManagerException 

byte [] 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.generateHash ( FileInputStream 
fis, String algorithm ) throws 
KeyManagerException 

This method generates a hash value of the data in input using a 
given algorithm. 
Parameters: 
fis the FileInputStream of the file containing the data to be 
hashed 
algorithm the algorithm used to calculate a hash value of the 
data 
Returns: 
the hash value 
Exceptions: 
KeyManagerException 

byte [] This method generates a hash value of the data in input using a 



 
  

 

D3.2 System architecture Page 166 of 175 

org.iso.mpeg.mxm.engine.securityengine.K
eyManager.generateHash ( byte[] data, 
String algorithm ) throws 
KeyManagerException 

given algorithm. 
Parameters: 
data the data to be hashed 
algorithm the algorithm used to calculate a hash value of the 
data 
Returns: 
the hash value 
Exceptions: 
KeyManagerException 

byte [] 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.generateRandomKey ( String 
algorithm, int keyLength ) throws 
KeyManagerException 

Generate a random key using a specific algorithm. 
Parameters: 
algorithm the algorithm used to generate the random key 
keyLength the length of the key to be generated, in bytes. 
Returns: 
the generated key 
Exceptions: 
KeyManagerException 

byte [] 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.generateSignature ( byte[] data, 
String algorithm, String keyAlias, String 
password ) throws KeyManagerException 

This method is used to generate a digital signature for the data in 
input using the given algorithm and a private key associated to a 
key alias. 
Parameters: 
data the data to be signed 
algorithm the algorithm used to sign the data 
keyAlias the alias associated to the private key to be used to sign 
the data 
password the password to access the key/certificate repository 
Returns: 
the digital signature of the input data 
Exceptions: 
KeyManagerException 

boolean 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.isAlgorithmSupported ( String 
algorithmURI ) 

 
This method is used to query whether an object implementing 
this interface supports a certain algorithm. 
Parameters: 
algorithmURI the URI identifying a cryptographic algorithm. 
Returns: 
true if the algorithm specified is supported 

boolean 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.verifyHash ( byte[] data, byte[] 
hashValue, String algorithm ) throws 
KeyManagerException 

This method verifies that the hash value of the data in input has 
a specific value. 
Parameters: 
data the data on which the hash value has to be calculated 
hashValue the hash value which has to be verified against the 
one calculated 
algorithm the algorithm used to calculate the hash value of the 
data 
Returns: 
true if the calculated value is equal to the generated one 
Exceptions: 
KeyManagerException  

boolean 
org.iso.mpeg.mxm.engine.securityengine.K
eyManager.verifySignature ( byte[] data, 
byte[] signature, String algorithm, String 
keyAlias, String password ) throws 
KeyManagerException 

This method is used to verify that the signature of the data in 
input is equals to a certain value. 
Parameters: 
data the data upon which digital signature has to be calculated 
signature the value of the signature to be verified 
algorithm the algorithm used to verify the signature 
keyAlias the alias associated to the key to be used to generate 
the signature 
password the password to access the key/certificate repository 
Returns: 
true if the digital signature calculated is equal to that given in 



 
  

 

D3.2 System architecture Page 167 of 175 

input 
Exceptions: 
KeyManagerException 

 

9.11.3 SecureDeviceManagerInterface 

Classes implementing this interface can be used to certify and verify the integrity of MXM Devices, when 

needed. The normal operation should be as follows: 

1. A Device is certified the first time is used. It means, that a fingerprint is calculated with the hardware 

data and basic software installed. The Device is thus uniquely identified. This information is sent to a 

secure repository. 

2. A Device is verified each time its integrity is critical. Verification recalculates the fingerprint and 

checks against the Secure repository if the fingerprint has changed. 

There are also operations to disable a device and to self-verify.  

Operation Description 
MXMObject 
org.iso.mpeg.mxm.engine.securityengine.S
ecureDeviceManager.certifydevice ( String 
deviceFingerprint, String userToken ) 

This method is employed to check the integrity of a software 
device prior to its first usage. Some features regarding the device 
(operating system) and/or the software device that is requesting 
the authorisation of a user action will be registered so that they 
can be later checked for integrity. 
Parameters: 
deviceFingerprint An XML piece that represents the relevant 
features about the device (operating system) and/or the 
software device. 
userToken An XML piece that represents the SAML token, which 
contains the credentials of the user. 
Returns: 
CertificationResult, a class that contains the following 
information: 
* Int certificationResult: the result of the certifydevice process 
* Byte[] devicePKCS12: an X509 certificate and private key that 
identify the certified device. The X509 certificate includes a 
unique device identifier and an enabling code that can be used 
for the selfVerify process. 

String 
org.iso.mpeg.mxm.engine.securityengine.S
ecureDeviceManager.disableDevice ( ) 

This method is employed to disable the operation of a software 
device due to any problem detected during the verifydevice 
process. The device will be deactivated in the device where it is 
running. 
Returns: 
The result of the disabledevice operation 

String 
org.iso.mpeg.mxm.engine.securityengine.S
ecureDeviceManager.estimateDeviceFinger
print ( ) 

This method is employed to extract relevant features about the 
device (operating system) and/or the software device that is 
requesting the authorisation of a user action. This information 
can be used to be registered during the first usage attempt of 
the device in the system so that it can be later checked for 
integrity. 
Returns: 
an XML piece that represents the relevant features about the 
device (operating system) and/or the software device 



 
  

 

D3.2 System architecture Page 168 of 175 

String 
org.iso.mpeg.mxm.engine.securityengine.S
ecureDeviceManager.selfVerifyDevice ( 
String deviceFingerprint ) 

This method is employed to locally check the integrity of a 
software device during its whole life operation. The features 
regarding the device are used to compute a security code and 
determine if it matches the enabling code received during 
certification. In this way, this method determines whether the 
device has been manipulated. 
Parameters: 
deviceFingerprint An XML piece that represents the relevant 
features about the device (operating system) and/or the 
software device. 
Returns: 
"OK" if the operation was successful, error message if not. 

String 
org.iso.mpeg.mxm.engine.securityengine.S
ecureDeviceManager.verifyDevice ( String 
deviceFingerprint, String userToken ) 

This method is employed to remotely check the integrity of a 
software device during its whole life operation. Some features 
regarding the device (operating system) and/or the software 
device that is requesting the authorisation of a user action are 
sent to be compared to those registered in the certifydevice 
process. 
Parameters: 
deviceFingerprint An XML piece that represents the relevant 
features about the device (operating system) and/or the 
software device. 
userToken An XML piece that represents the SAML token, which 
contains the credentials of the user. 
Returns: 
The result of the verifydevice process 

 

9.11.4 SecureRepositoryManagerInterface 

Classes implementing this interface are used to store, retrieve and manage confidential information in 

the secure repository. 

Operation Description 
void 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.addConfidentialIn
fo ( String alias, MXMObject 
confidentialInfo, MXMObject 
secureRepository ) throws 
SecureRepositoryManagerException 

This method is used to store generic confidential information 
into the secure repository. 
Parameters: 
alias the alias to be associated to the security information to be 
stored 
confidentialInfo the secure information to be stored in the 
secure repository. 
Exceptions: 
SecureRepositoryManagerException 

void 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.addLicense ( 
String alias, MXMObject license, 
MXMObject secureRepository ) throws 
SecureRepositoryManagerException 

This method is used to store a license into the secure repository 
associating an alias to it. 
Parameters: 
alias the alias to be associated to the license to be stored 
license the license to be stored in the secure repository 
Exceptions: 
SecureRepositoryManagerException 

int 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.deleteConfidentia
lInfo ( String alias, MXMObject 
secureRepository ) throws 
SecureRepositoryManagerException 

This method is used to delete confidential information 
associated to a certain alias and stored in the secure repository. 
Parameters: 
alias the alias associated to the confidential information to be 
deleted 
Returns: 
the number of entries that have been deleted 
Exceptions: 



 
  

 

D3.2 System architecture Page 169 of 175 

SecureRepositoryManagerException 
int 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.deleteLicenses ( 
String alias, MXMObject secureRepository ) 
throws SecureRepositoryManagerException 

This method is used to delete all licenses associated to a given 
alias from the secure repository. 
Parameters: 
alias the alias associated to the licenses to be deleted 
Returns: 
the number of licenses that have been deleted 
Exceptions: 
SecureRepositoryManagerException 

List<MXMObject> 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.getConfidentialIn
fo ( String alias, String objectType, 
MXMObject secureRepository ) throws 
SecureRepositoryManagerException 

This method is used to retrieve confidential information 
associated to a certain alias and stored in the secure repository. 
Parameters: 
alias the alias associated to the confidential information to be 
retrieved 
Returns: 
all entries of confidential information that have been associated 
to the given alias 
Exceptions: 
SecureRepositoryManagerException 

QName 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.getCountry ( 
MXMObject secureRepository ) throws 
SecureRepositoryManagerException 

 

List<MXMObject> 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.getLicenses ( 
String alias, String ObjectType, MXMObject 
secureRepository ) throws 
SecureRepositoryManagerException 

This method is used to retrieve a list of licenses associated to a 
certain alias from the secure repository. 
Parameters: 
alias the alias associated to one or more licenses stored in the 
secure repository 
Returns: 
all licenses associated to a certain alias 
Exceptions: 
SecureRepositoryManagerException 

QName 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.getRegion ( 
MXMObject secureRepository ) throws 
SecureRepositoryManagerException 

 

boolean 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.isCommercial ( 
MXMObject secureRepository ) throws 
SecureRepositoryManagerException 

 

void 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.setCommercial ( 
MXMObject secureRepository ) throws 
SecureRepositoryManagerException 

 

void 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.setCountry ( 
QName country, MXMObject 
secureRepository ) throws 
SecureRepositoryManagerException 

 

void 
org.iso.mpeg.mxm.engine.securityengine.S
ecureRepositoryManager.setRegion ( 
QName region, MXMObject 
secureRepository ) throws 
SecureRepositoryManagerException 

 



 
  

 

D3.2 System architecture Page 170 of 175 

9.11.5 SecurityEngine Class 

Classes implementing this interface are entry point classes for performing security-related functions. 

From classes implementing the SecurityEngine interface one may get instances of classes performing the 

main functionalities of this MXM Engine: 

• classes to manage digital certificates 

• classes to manage symmetric keys and encrypt/decrypt data 

• classes to store confidential information in the secure repository 

• classes to manage the integrity of MXM tools 

 

Operation Description 
abstract CertificateManager 
org.iso.mpeg.mxm.engine.securityengine.S
ecurityEngine.getCertificateManager ( ) 
[pure virtual] 

This method returns an instance of class CertificateManager 
which is needed to create new credentials and manage 
certificates. 
Returns: 
an object of class CertificateManager or null if this method has 
not been implemented by the specific SecurityEngine. 

abstract KeyManager 
org.iso.mpeg.mxm.engine.securityengine.S
ecurityEngine.getKeyManager ( ) [pure 
virtual] 

This method returns an instance of class KeyManager which is 
needed to generate symmetric keys and to encrypt/decrypt data. 
Returns: 
an object of class KeyManager or null if this method has not 
been implemented by the specific SecurityEngine. 

abstract SecureDeviceManager 
org.iso.mpeg.mxm.engine.securityengine.S
ecurityEngine.getSecureDeviceManager ( ) 
[pure virtual] 

This method returns an instance of the class SecureToolManager 
which is needed to certify the integrity of MXM tools. 
Returns: 
an object of class SecureToolManager or null if this method has 
not been implemented by the specific SecurityEngine 

abstract SecureRepositoryManager 
org.iso.mpeg.mxm.engine.securityengine.S
ecurityEngine.getSecureRepositoryManager 
( ) [pure virtual] 

This method returns an instance of class 
SecureRepositoryManager which is needed to store confidential 
information such as licenses and keys in the secure repository. 
Returns: 
an object of class SecureRepositoryManager or null if this 
method has not been implemented by the specific 
SecurityEngine. 

abstract SecurityInfoCreator 
org.iso.mpeg.mxm.engine.securityengine.S
ecurityEngine.getSecurityInfoCreator ( ) 
[pure virtual] 

This method returns an instance of the class SecurityInfoCreator 
which is used for creating security-related data structures such 
as those defined by W3C Digital Signature and XML Encryption 
Returns: 
an object of class SecurityInfoCreator or null if this method has 
not been implemented by the specific SecurityEngine 

abstract SecurityInfoParser 
org.iso.mpeg.mxm.engine.securityengine.S
ecurityEngine.getSecurityInfoParser ( ) 
[pure virtual] 

This method returns an instance of the class SecurityInfoParser 
which is used for parsing security-related data structures such as 
those defined by W3C Digital Signature and XML Encryption 
Returns: 
an object of class SecurityInfoParser or null if this method has 
not been implemented by the specific SecurityEngine 

 

9.11.6 SecurityEngineKeys Interface 

 



 
  

 

D3.2 System architecture Page 171 of 175 

Operation Description 
final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.ASYMMETRI
C_ENCRYPTION_ALGORITHM = 
"org.iso.mpeg.mxm.engine.securityengine.asymmetric.encryption.algorith
m" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.ASYMMETRI
C_ENCRYPTION_KEY_LENGTH = 
"org.iso.mpeg.mxm.engine.securityengine.asymmetric.encryption.key.leng
th" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.CERTIFICATE
_DURATION = 
"org.iso.mpeg.mxm.engine.securityengine.certificate.duration" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.COMMERCIA
L_ENTITY = "org.iso.mpeg.mxm.engine.securityengine.commercial.entity" 
[static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.COUNTRY = 
"org.iso.mpeg.mxm.engine.securityengine.country" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.COUNTRY_N
AMESPACE_URI = "urn:mpeg:mpeg21:2003:01-REL-SX-NS:country" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.KEY_STORE_
PATH = "org.iso.mpeg.mxm.engine.securityengine.key.store.path" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.ORG_NAME 
= "org.iso.mpeg.mxm.engine.securityengine.org.name" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.ORG_UNIT = 
"org.iso.mpeg.mxm.engine.securityengine.org.unit" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.REGION = 
"org.iso.mpeg.mxm.engine.securityengine.region" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.REGION_NA
MESPACE_URI = "urn:mpeg:mpeg21:2003:01-REL-SX-NS:region" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.SECURE_INF
O_STORAGE_PATH = 
"org.iso.mpeg.mxm.engine.securityengine.secure.info.storage.path" 
[static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.SECURE_LICE
NSE_STORAGE_PATH = 
"org.iso.mpeg.mxm.engine.securityengine.secure.license.storage.path" 
[static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.SIGNATURE_
ALGORITHM = 
"org.iso.mpeg.mxm.engine.securityengine.signature.algorithm" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.SYMMETRIC_
ENCRYPTION_ALGORITHM = 
"org.iso.mpeg.mxm.engine.securityengine.symmetric.encryption.algorithm
" [static] 

 



 
  

 

D3.2 System architecture Page 172 of 175 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.SYMMETRIC_
ENCRYPTION_KEY_LENGTH = 
"org.iso.mpeg.mxm.engine.securityengine.symmetric.encryption.key.lengt
h" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.USER_EMAIL 
= "org.iso.mpeg.mxm.engine.securityengine.user.email" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.USER_FIRST_
NAME = "org.iso.mpeg.mxm.engine.securityengine.user.first.name" [static] 

 

final String 
org.iso.mpeg.mxm.engine.securityengine.SecurityEngineKeys.USER_LAST_
NAME = "org.iso.mpeg.mxm.engine.securityengine.user.last.name" [static] 

 

 

9.11.7 SecurityInfoCreatorInterface 

Classes implementing this interface are responsible for creating security-related data structures defined 

by W3C Digital Signature specification. 

Operation Description 
EncryptedDataCreator 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoCreator.getEncry
ptedDataCreator ( ) throws SecurityEngineException 

 

EncryptedKeyCreator 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoCreator.getEncry
ptedKeyCreator ( ) throws SecurityEngineException 

 

KeyInfoCreator 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoCreator.getKeyInf
oCreator ( ) throws SecurityEngineException 

 

KeyValueCreator 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoCreator.getKeyVa
lueCreator ( ) throws SecurityEngineException 

 

SignatureCreator 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoCreator.getSignat
ureCreator ( ) throws SecurityEngineException 

 

X509DataCreator 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoCreator.getX509D
ataCreator ( ) throws SecurityEngineException 

 

 

9.11.8 SecurityInfoParserInterface 

Classes implementing this interface are responsible for creating security-related data structures defined 

by W3C Digital Signature specification. 

Operation Description 
EncryptedDataParser 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoParser.getEncrypted
DataParser ( ) throws SecurityEngineException 

 

EncryptedKeyParser 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoParser.getEncrypted
KeyParser ( ) throws SecurityEngineException 

 

KeyInfoParser  



 
  

 

D3.2 System architecture Page 173 of 175 

org.iso.mpeg.mxm.engine.securityengine.SecurityInfoParser.getKeyInfoPar
ser ( ) throws SecurityEngineException 
KeyValueParser 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoParser.getKeyValueP
arser ( ) throws SecurityEngineException 

 

SignatureParser 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoParser.getSignatureP
arser ( ) throws SecurityEngineException 

 

X509DataParser 
org.iso.mpeg.mxm.engine.securityengine.SecurityInfoParser.getX509DataP
arser ( ) throws SecurityEngineException 

 

 
 



 
  

 

D3.2 System architecture Page 174 of 175 

10 ANNEX B – Survey of solutions of real world descriptors 

 

In terms of real world descriptors we have a few solutions at our disposal nowadays. From existing 

solutions there are two of them that stand out: NRF ARTS and Etilize. 

The Association for Retail Technology Standards (ARTS) of the National Retail Federation is an 

international membership organization dedicated to reducing the costs of technology through 

standards. Since 1993, ARTS has been delivering application standards exclusively to the retail industry. 

ARTS has four standards: The Standard Relational Data Model, UnifiedPOS, XML, and the Standard RFPs 

(in partnership with NRF). Membership is open to all members of the international technology 

community, retailers from all industry segments, application developers and hardware companies. 

The ARTS Retail Data Model offers two distinct perspectives across the retail business. These are the 

Enterprise Context, which offers insight into the retail enterprise via three levels within the retail 

operation (home office, distribution and store levels), and Subject Area Composition, which gives an 

insight into the retail enterprise via the subject areas which cut across all three levels of retail operation. 

The ARTS Retail Data Model currently supports ten of eleven retail business areas. These areas include: 

• Merchandise flow management 

• Inventory management 

• Item and price maintenance 

• Point of sale processing 

• Tender control 

• Store administration 

• Customer relationship management 

• Sales and productivity reporting 

• Ordering (partially supported) 

• Workforce Management (partially supported) 

 

Etilize Inc. is a subsidiary of GfK Group founded in 2000 and is the largest product data provider of 

technology and office supply products in the world with databases on 7 million products in 30 countries 

and in 20 languages. Etilize provides product data to customers in more countries than any other 

provider of Information Technology and Consumer Electronics content. It offers product data 

information, product content and product data services for Resellers, Solution Providers, Comparison 



 
  

 

D3.2 System architecture Page 175 of 175 

Shopping Engines, Online E-tailers, E-commerce websites, Value-Added-Resellers, Manufacturers and 

Enterprise customers. 

They publish standardized, e-commerce and retail store-ready product data across multiple industries: 

• Information Technology 

• Consumer Electronics 

• Household Appliances 

• Photography 

• Home&Garden/ Do-It-Yourself 

• Data Capture & Point of Sale 

• Office Supplies 

• Telecommunications 

• Custom SKU Development to fit individual needs. 


