
On the IP support in IEEE 802.15.4 LR-WPANs:
self-configuring solutions for real application

scenarios
Francesca Lo Piccolo ∗, Donato Battaglino ∗, Lorenzo Bracciale∗,

Andrea Bragagnini†, Maura Santina Turolla† Nicola Blefari Melazzi ∗
∗DIE, University of Rome “Tor Vergata”, Rome, Italy

{francesca.lopiccolo,donato.battaglino,lorenzo.bracciale,blefari}@uniroma2.it
†Telecom Italia, Turin, Italy

{andrea.bragagnini,maurasantina.turolla@telecomitalia.it}@telecomitalia.it

Abstract—Due to the lack of IP support, the ZigBee proto-
col stack for IEEE 802.15.4 low rate wireless personal area
networks (LR-WPANs) is the perfect solution for closed, ad-
hoc environments. However, we can envisage also open and
interconnected application scenarios, such as the Internet of
Things or the integration of ZigBee/IEEE 802.15.4 nodes in
mobile/smart phones, that would greatly benefit from the IP
support.

The LoWPAN adaptation layer proposed by the 6LoWPAN
IETF working group to enable the transmission/reception of
IPv6 data in IEEE 802.15.4 networks may be regarded as the
first step towards the direction of IP direct support into IEEE
802.15.4 nodes. However, a fully fledged solution to be used in
the scenarios outlined above still lacks the following functionality:
i) self-configuring address assignment mechanism; ii) multi-hop
routing protocol; iii) support of Internet-compliant transport
protocols; iv) self-configuring network and service discovery. It
may seem trivial to provide such functionality in an IP world, as
off the shelf solutions could be adopted; however, this is not an
easy task, given the very limited hardware capabilities of IEEE
802.15.4 devices.

In this paper we define a complete protocol architecture and
specific self-configuring mechanisms to support the aforemen-
tioned functionality over IEEE 802.15.4 devices, taking into
account their hardware constraints.

We also present an implemented test-bed which demonstrates
the functionality of the proposed solution in a real application
scenario. 1.

I. INTRODUCTION

Low rate wireless personal area networks (LR-WPANs)
are the ideal candidate for enabling applications with simple
wireless connectivity, relaxed throughput and relaxed latency
requirements in fields such as sensor network applications
among which home automation, industrial control, personal
medical assistance and remote control and monitoring.

The most important and currently available reference stan-
dard for LR-WPANs is IEEE 802.15.4 [1][3], which defines
the physical layer and the medium access control (MAC)
sub-layer. In what follows, the LR-WPANs using the IEEE

1This work has been carried out in cooperation with and with funding from
Telecom Italia.

802.15.4 physical and MAC layers will be denoted as IEEE
802.15.4 LR-WPANs.

IEEE 802.15.4 physical and MAC layers are also used
in conjunction with the network layer and the application
framework defined by the ZigBee Alliance association in the
so said ZigBee protocol stack [4].

Unfortunately, the network layer of the ZigBee protocol
stack is not interoperable with the IP network layer. On the one
hand, this makes the ZigBee protocol stack the perfect solution
for closed and not interconnected ad hoc environments. On
the other hand, the lack of IP support in ZigBee WPANs
is a serious drawback for open and connected environments,
which would clearly benefit from built-in inter-networking
functionalities. As a matter of fact, we can imagine several
application scenarios, going beyond closed automation, control
and monitoring networks, which would take great advantage
from an IP support, such as:

• integration of ZigBee devices in mobile/smart phones:
Telecom Italia, the major Italian operator and member of
ZigBee Alliance, envisages in [5] a scenario comprising
mobile phones equipped with either the so-called ZSIMs,
which are SIMs integrating a ZigBee node, or the so
called ZSDs, which are micro or mini SD cards inte-
grating a ZigBee chip-set. In such a scenario, IP-enabled
ZigBee nodes would be very convenient to complement
GSM/UMTS with a near field technology for data ex-
change (chat and advertisements in a commercial center,
configuration data, micro-payments, access control, etc.).

• pervasive networking: in an Internet of Things [6] ZigBee
could be a very convenient technology to support sensor
networks and in general to support communication among
networked devices; however, since the IP protocol is
the most natural and obvious candidate for building an
Internet of Things, the wireless technology of choice
should include easy internetworking function with IP
networks.

In the literature we can find several solutions to interconnect
ZigBee WPANs to IP networks (see II for a description of



such solutions). Most of these proposals exploit a complex,
stateful gateway between IEEE 802.15.4 LR-WPANs nodes
and IP networks; the gateway establishes and handles the
communication between the Internet and the IEEE 802.15.4
WPANs and manages all the necessary validity checks and
message format translations. In addition, to allow ZigBee
nodes to communicate with IP hosts in the Internet, it is
necessary to either add a suitable application layer protocol to
ZigBee nodes or to assign a further suitable identifier/address
to both ZigBee nodes and IP nodes implementing an ad-
hoc abstraction layer. These approaches could be viable in
a limited set of scenarios where flexibility and openness are
not important, but they are less appealing for more general
and future-proof applications.

Obviously, if we want to interconnect two different complete
protocol stacks, there is not an easy way out. A more radical
approach is to replace the network and upper layers of ZigBee
with a TCP/IP stack, keeping only the physical and MAC layer
of IEEE 802.15.4.

In this way, all WPANs nodes would naturally support IP,
and data transfer to/from the Internet would become trivial.

However, some limitations of IEEE 802.15.4 do not allow to
simply put the classical TCP/IP stack directly over the MAC
layer, but require a suitable adaptation layer. These limitations
include a too small data transfer unit (of 128 bytes), and the
limited memory and processing capabilities of current IEEE
802.15.4 devices.

The IETF 6LoWPAN (IPv6 over Low power Wireless
Personal Area Networks) working group has recently proposed
a solution to overcome such limitations by defining an adapta-
tion layer ([7]), the so-called LoWPAN adaptation layer, which
enables the transmission/reception of IPv6 packets over LR-
WPANs based on the IEEE 802.15.4 standard, and is located
between the IEEE 802.15.4 MAC layer and the IPv6 layer.

The LoWPAN adaptation layer solves the issue of the
small size of the IEEE 802.15.4 data transfer unit by offering
compression and fragmentation/de-fragmentation capabilities.
However, a fully fledged solution to be used in the scenar-
ios outlined above still lacks the following functionality: i)
self-configuring address assignment mechanism; ii) multi-hop
routing protocol; iii) support of Internet-compliant transport
protocols; iv) self-configuring network and service discovery.
It may seem trivial to provide such functionality in an IP
world, as off the shelf solutions could be adopted; however,
this is not an easy task, given the very limited hardware
capabilities of IEEE 802.15.4 devices.

In this setting, the contribution of this paper is twofold:
i) to define a complete protocol stack integrating a specific
self-configuring mechanisms to support the aforementioned
functionality over IEEE 802.15.4 devices, taking into account
their hardware constraints; ii) to present a test-bed, which we
implemented to demonstrate the functionality of our proposed
solution and of selected applications.

This work has been carried out during the preparation of
the “CONVERGENCE” project [2] and takes inspiration from
the CONVERGENCE general goal of handling new needs

associated with the emergence of an Internet of services, an
Internet of media, an Internet of people and an Internet of
”things”. This implies a strategic shift from ”host-centric” to
”content-centric” and ”data-centric” networking. Against this
background, CONVERGENCE proposes to enhance the In-
ternet with a novel, content-centric, publish-subscribe service
model, based on the Versatile Digital Item (VDI): a common
container for all kind of digital content, derived from the
MPEG21 standard.

The paper is organized as follows. Section II discusses the
related work. Section III provides the necessary background
information on 6LoWPAN specification. Section IV presents
the hardware constraints of typical IEEE 802.15.4 devices.
Section V identifies solutions for routing, address assignment,
transport, network and service discovery that are suitable for
the hardware limitations of typical 802.15.4 devices. Section
VI presents a possible protocol architecture. Such architecture
has been implemented in a real test-bed which is described in
section VII. Finally, we conclude the paper in section VIII.

II. RELATED WORK

TinyREST [8] uses an HTTP-based approach. It assigns
a URL address to all resources, and it uses HTTP methods
and extensions to request data or send command to the
IEEE 802.15.4 WPANs. However, HTTP messages are not
encapsulated within TCP packets, and they are transmitted via
the TinyOS network stack. Since this stack is not IP-compliant,
a HTTP-2-TinyREST gateway is necessary for establishing
and handling the communication to/from the Internet and the
IEEE 802.15.4 WPANs, including all the necessary validity
checks and message format mappings.

TinySIP [9] uses the SIP protocol and a subset of SIP
methods to enable the communication between IEEE 802.15.4
WPANs and the Internet. As in TinyREST, a sort of communi-
cation abstraction layer is provided in such a way that TinySIP
layer can be used upon an IP-not-compliant already existing
protocol stack. This implies that a TinySIP gateway, mapping
SIP methods to TinySIP methods and disseminating the mes-
sages among the IEEE 802.15.4 nodes, plays a fundamental
role.

Sakane et al. [10] focus on the interconnection between
IEEE 802.15.4 WPANs and the public IPv6 Internet too. They
present i) a translation method which makes use of a common
addressing layer by defining a device identifier called devid to
identify 802.15.4 nodes and IPv6 nodes in a similar way, and
ii) an interconnection node called translator to interconnect
IEEE 802.15.4 WPANs and the public IPv6 Internet. In more
detail, the translator achieves virtual IEEE 802.15.4 addresses
for IPv6 nodes and keeps trace of the correspondence between
the virtual IEEE 802.15.4 address, IPv6 address and devid.
When an IEEE 802.15.4 node has to communicate with an
IPv6 public node, it sends data to the virtual IEEE 802.15.4
address of the IPv6 node. In such a way, the translator can
intercept data, translate properly the format and forward data
to the IPv6 node. Viceversa, when an IPv6 public node wants
to communicate with an IEEE 802.15.4 node, it sends data



directly to the translator by indicating explicitly the destination
devid, so that the translator forwards data to the actual IEEE
802.15.4 destination node.

A similar internetworking mechanism to interconnect Zig-
Bee/802.15.4 WPAN and IPv6 networks has been proposed in
[11]. Specifically, every ZigBee node is assigned with a Global
Unicast IPv6 address, and each IPv6 node is also assigned with
a ZigBee short address. In addition, IPv6 nodes are organized
in Multicast Groups to enable the reception of broadcast
messages from ZigBee networks. The key component of the
system is a stateful gateway which i) assigns ZigBee nodes
and IPv6 nodes with the corresponding IPv6/ZigBee addresses,
ii) stores the pairs (ZigBee address, IPv6 address), iii) keeps
trace of all the on going communications and executes all the
necessary format translation operations.

Other solutions are instead based on the LoWPAN adapta-
tion layer defined by the 6LoWPAN IETF working group in
RFC 4944 [7]. For instance, the protocol stacks blip [12] or
uIPv6 [13] implement the LoWPAN adaptation layer. The first
one includes also the header compression scheme suggested
in the RFC 4944, IPv6 neighbour discovery, default route
selection, point-to-point routing, UDP and a prototype of TCP.
The second one includes Duplicate Address Detection (DAD)
to avoid collisions between auto-assigned addresses, routing
functionalities, TCP and UDP.

It is worth mentioning also the activity of ROLL (Routing
Over Low power and Lossy networks) IETF working group,
which presents in [14] the routing requirements which should
be taken in account in the design of an ad-hoc routing
protocol for Low Power and Lossy Networks (LLNs). These
are typically composed of many embedded devices with
limited power, memory, and processing resources and are
interconnected by a variety of links, such as IEEE 802.15.4,
Bluetooth, Low Power Wi-Fi. As a consequence, there is a
very high number of similarities between LLNs and IEEE
802.15.4 networks, and 6LoWPAN and ROLL working groups
are working together to enable a Wireless Embedded Internet
composed of IEEE 802.15.4 devices. The problem of how
to make applicative protocols (such as HTTP) inter-operate
with lightweight underlying protocols, exploiting LoWPAN
adaptation layer and designed for low-rate and lossy networks,
is formulated in the Internet Draft [15].

III. BACKGROUND INFORMATION ON 6LOWPAN
SPECIFICATION

This section provides the reader with the necessary back-
ground information on 6LoWPAN specification [7]. This pro-
poses i) IPv6 Stateless Address Auto-configuration [16] for
IPv6 address assignment, and ii) the LoWPAN adaptation layer
between the IEEE 802.15.4 MAC sub-layer and the IPv6 layer.

According to the IPv6 Stateless Address Auto-configuration,
first nodes generate an IPv6 link-local unicast address by
placing the prefix FE80::/64 before the so-called Interface
Identifier. Interface Identifiers can be derived from either the
64-bit MAC address which is assigned to each device by the
manufacturer (the so said IEEE EUI-64 identifier) or the 16-bit

short address, which the IEEE 802.15.4 PAN coordinator2 may
assign after the association (see [3] for more details). Then,
if nodes are informed by the coordinator about the presence
of a global link prefix, they generate a global IPv6 unicast
address by appending their interface identifier to the 64 bits
of the global link prefix.

The LoWPAN adaptation layer may be regarded as a
sequence of “header type + header fields” blocks, which, in
conjunction with the IPv6 payload, are encapsulated within
the payload of an IEEE 802.15.4 data frame. The follow-
ing possible header types are defined in [7]: mesh header,
broadcast header, fragmentation header, compressed or not
compressed IPv6 header. The only header that has to be
necessarily included is the IPv6 header. In case of inclusion
of more than one header, the order of appearance is the one
in figure 1, which illustrates the case in which all the headers
are included.

Fig. 1. IEEE 802.15.4 data frame including 6loWPAN possible headers and
IPv6 payload.

The mesh header has been introduced to forward 6LoWPAN
datagrams over multiple radio hops and support layer-two
forwarding. The broadcast header allows to support multi-hop
forwarding capability in case of broadcast/multicast communi-
cation. The fragmentation header has been introduced since i)
the maximum physical layer packet size of IEEE 802.15.4 is
only 128 bytes, ii) according to IPv6 specification [17], every
link in the network must support a Maximum Transfer Unit
(MTU) size at least equal to 1280 bytes, and on any link that
cannot transport a 1280 bytes packet in one piece, link-specific
fragmentation and reassembly must be provided at a layer
below IPv6, iii) IEEE 802.15.4 MAC layer does not support
any fragmentation/reassembly function. Finally, the possibility
of compressing the IPv6 header has been introduced since i)
at most 102 bytes are available for the IEEE 802.15.4 payload,
ii) being IPv6 headers 40 bytes long, the space available for
upper-layer protocols would be at most 62 bytes without any
compression scheme. The rationale behind the compression
solution adopted by 6LoWPAN consists in omitting redundant
information that i) either can be derived from the IEEE
802.15.4 header (e.g. interface identifiers, packet length) or
ii) is common for all nodes (e.g. protocol version, link-local
or global prefix, traffic class, flow label). Under this way of

2We recall that there are three logical roles a device can play in an
IEEE 802.15.4 LR-WPAN: i) coordinator, which provides synchronization
services through the transmission of beacons, ii) PAN coordinator, which
is the principal coordinator of the PAN (each IEEE 802.15.4 network has
exactly one PAN coordinator) and it always starts a new PAN after selecting
a proper frequency channel on which to operate, iii) end device, which is
a simple device. The logical role a node plays depends also on whether it
is a full-function device (FFD) or a reduced-function device (RFD). FFDs
implement the complete protocol set, so that only FFDs may play the role
of PAN coordinator and coordinator. RFDs implement only minimal protocol
functionalities, and they can only play the role of simple end devices.



operation, the only field that can not be compressed is the Hop
Limit, which needs to be decremented for each forwarding
hop.

IV. HARDWARE CONSTRAINTS OF TYPICAL IEEE
802.15.4 DEVICES

This section presents the hardware constraints of typical
IEEE 802.15.4 devices. Such constraints pose several chal-
lenges in the identification of basic services and functionalities
to be used in conjunction with 6LoWPAN solution to fully
enable the interaction between IEEE 802.15.4 LR-WPANs and
IP networks.

In what follows, we assume as reference hardware a com-
mercial and wide-deployed 802.15.4 chip, the Texas Instru-
ments’ System-on-Chip CC2430 [18], that may be regarded
as representative of the whole category.

This chip has a 2.4 GHz IEEE 802.15.4 RF transceiver,
an 8051 micro-controller, a flash memory of 128 Kb, 8 Kb
of RAM memory (able to maintain only 4 kb of data when
the system goes in sleep mode). The extension area of the
SoC is 7mm× 7mm. Its power consumption is 27mA when
transmitting or receiving data, while it is limited to 0.5µA
in sleep mode. According to the IEEE 802.15.4 standard, the
theoretical raw data rate is 250 Kbps.

Two closed-source protocol stacks are available for the SoC
CC2430: i) “TIMAC”, that implements the IEEE 802.15.4
MAC sublayer and requires about 40 Kb of the total flash
memory, and ii) “ZStack”, that implements the IEEE 802.15.4
MAC sublayer and the upper ZigBee layers, requires about
100 Kb of the total flash memory and leaves less than 30 Kb
for applications and services.

The flash memory occupation is not just an implementation
issue, as it makes impossible the coexistence of both IPv6 and
ZigBee stacks.

Moreover even if forthcoming devices will be reasonably
more powerful in terms of memory storage (for instance TI’s
SoC CC2530 supports up to 256 Kb of flash memory), it
is necessary to take a natural design trade-off into account:
advances in technology could indeed impact both system
capabilities (e.g. increasing the storage memory) and system
integration (e.g. reducing the surface/power consumption of
the chip and a s a consequence reducing storage capabilities).

V. BASIC PROTOCOL/FUNCTIONALITIES TO BE USED IN
CONJUNCTION WITH 6LOWPAN

In this section we focus on a limited set of basic functionali-
ties, to be used in conjunction with LoWPAN adaptation layer,
and after critically reviewing existing literature solutions,
we try to identify the most suitable one for the hardware
constraints and limitations which typically 802.15.4 devices
exhibit.

The section is organized in four subsections, which address
the issue of what multihop intra-PAN routing protocol (sub-
section V-A), automatic address assignment mechanism (sub-
section V-B), transport protocol (subsection V-C), automatic
network and service discovery mechanisms (subsection V-D)

should be selected to operate in conjunction with 6LoWPAN
in resource-constrained devices.

A. Multihop Intra-PAN Routing

The 6LoWPAN IETF working group assumes that each
node is equipped with a proper routing table to support multi-
hop forwarding capabilities, but it does not mention how to
fill such routing tables. So a multihop routing protocol has to
be introduced.

On the one hand, the selection of the multihop intra-PAN
routing protocol has to be done according to suitable require-
ments, defined by ROLL working group in [14], which take
into account the main characteristics of IEEE 802.15.4 LR-
WPANs, such as low bandwidth, short range, scarce memory
capacity, limited processing capability and other attributes
typical of inexpensive hardware. On the other hand, 6LoW-
PAN IETF working group has recommended in [19] other
reasonable routing requirements. Among these, we cite small
code size and routing state to fit the typical 6LoWPAN node
capacity (RAM size from 2KB to 8KB and flash memory
size from 48 KB to 128 KB), efficient use of routing control
packets to minimize power consumption, small size of routing
control messages to avoid fragmentation of physical layer
frames, robustness against packet losses, reliability in presence
of unresponsive nodes, scalability.

According to the above requirements and after analysing
the different routing protocol available for LR-WPANs and
MANET, our opinion is that AODV is to be preferred to the
other protocols. The reasons are the following: i) simplicity, ii)
lower signalling overhead and memory load than in proactive
routing protocols, iii) AODV has been evaluated and selected
by ZigBee Alliance to be included in the ZigBee Protocol
stack, iv) as it will be explained in subsection V-B, AODV
route requests and replies may be exploited for address auto-
assignment and duplicate address detection.

B. Automatic address assignment

The specification of how the PAN coordinator assigns 16-
bit short addresses is out of the scope of the IEEE 802.15.4
standard, which leaves the responsibility of such assignment to
upper layer protocols. However, the 6LoWPAN IETF working
group admits the possibility that IPv6 layer-3 addresses for
IEEE 802.15.4 nodes are derived from 16-bit layer 2 short
addresses, without specifying how 16-bit layer 2 short ad-
dresses are generated and assigned. As a consequence, since
16-bit short addresses are highly desirable for the sake of
compression, especially for communications within an IEEE
802.15.4 LR-WPAN, a mechanism for 16 bit-address auto-
configuration and assignment has to be introduced, to operate
in conjunction with LoWPAN adaptation layer.

Several address auto-configuration solutions have been pro-
posed in the literature for mobile ad hoc networks (MANETs).
However, are these solutions well-suitable also for 6LoWPAN-
enabled IEEE 802.15.4 LR-WPANs case?

Generally speaking, address auto-configuration protocols for
ad hoc networks can be classified as stateful and stateless.



In the stateful approach, each node has to maintain detailed
state information about the utilization of the MANET address
space. This state information is usually represented by an
address allocation table that contains the addresses currently
in use within the ad hoc network. The main challenge of
such approach is the high signalling overhead necessary for
the maintenance of the allocation table consistency, which is
not guaranteed at all in presence of packet losses and network
merging.

In the stateless approach each node selects autonomously
and randomly its own address and performs a Duplicate
Address Detection (DAD) procedure to verify its uniqueness
and resolve conflicts.

According to a taxonomy introduced in [20], DAD proce-
dures can be classified as Strong and Weak. Strong DAD is
used by new nodes joining the network to check if the selected
address is already in use. The main drawback of these solutions
is that they do not quickly respond to network split/join,
even if the procedure is repeated periodically. Perkins et al.
provide in [21] an example of Strong DAD. Specifically,
when a node joins the network, it selects two addresses: a
random address and a temporary address. The last one is
selected from a “reserved” range of addresses. In this way, it
floods the network with an address request (AREQ) message
originated from the temporary IP address. If the selected
address has already been assigned, the colliding node sends
back to the temporary address of the joining node an address
reply (AREP) message. If no AREP message is received,
after a timeout the selected random address may be assigned;
otherwise, the joining node retries with another randomly
selected address. In the above solution the DAD procedure
may fail in case of high-delay networks and message losses

Weak DAD copes with unbounded delay messages and
avoids the use of time outs. To circumvent the chicken-and-egg
problem of “how to signal that an address duplication occurs
if IP is not usable because of the address duplication”, in [20]
Vaidya proposes to make every node select an unique ID string
to be associated with the IP address in routing packets. In such
a way, i) each entry in the routing table is unambiguously
identified by the pair < address, key >, ii) address conflicts
are detected when multiple keys are associated with the same
address, and iii) duplicate address detection fails only when
different nodes select the same address and the same key.

With reference to IEEE LR-WPANs, the stateless approach
is the most suitable for IEEE 802.15.4 LR-WPANs, since it
does not require to store the address allocation table. This
represents a desirable memory saving especially if we consider
that RAM size of typical IEEE 802.15.4 devices is about 8
KB, that can even half itself in sleeping mode. Theoretically,
both solutions in [21] and [20] can operate in IEEE 802.15.4
networks. In fact, a solution like the one in [21] could
take advantage from reactive routing protocols, whose route
discovery requests and replies could be used as address request
(AREQ) and address reply (AREP) in the DAD procedure.
Likewise, a solution like the one in [20] could use the 64-bit
MAC address as unambiguous key. In the last case, however,

it is necessary to store for each routing table entry also the 64-
bit MAC address and, as a consequence, routing tables would
require more memory space. This is the main reason why we
consider more suitable a solution like the one in [21] for the
self-configuring address assignment in the proposed protocol
stack.

C. Transport protocol

The best choice would be certainly to include both UDP
and TCP.

UDP is for sure simpler to implement than TCP. In addition,
the authors of [7] mention only UDP as possible transport
protocol and suggest a possible compression scheme for UDP
headers to reduce UDP header size from 8 bytes to just 4
bytes.

As regards TCP, we can identify two main factors that could
prevent its use: i) limited flash ROM memory of a device and
ii) limited RAM memory.

The first one could prevent the implementation of a protocol
stack including TCP as transport protocol. Taking in account
our implementation, we can claim that the IEEE 802.15.4 and
6LoWPAN functionalities have a code size of about 60 Kb
(out of the 128 Kb totally available on the reference hardware)
in the implemented test-bed. The implementation of TCP in
µC/TCP-IP [22], that is one of the currently available minimal
TCP/IP stacks, requires an amount of memory ranging from
33 KB to 43 KB. Thus, only an amount of memory ranging
from 25 to 35 KB would remain available for applications.

The second one could impede the full exploitation of the
TCP functionalities. For instance, let us assume that i) the
available RAM memory is 8 KB and it reduces to only 4
KB in energy saving mode and ii) 1 KB out of 8/4 KB is
dedicated to each one of the sending and receiving buffers.
This seems a reasonable choice, since it is equivalent to
occupy half of the whole RAM memory available in energy
saving mode. By subtracting the TCP and LoWPAN headers
from the maximum physical data unit size of 128 bytes,
we can deduce that 93 bytes is the maximum TCP segment
size (MSS). This means that at most 10 not-acknowledged
segments can be transmitted in case of one single connection
and at most 5 not acknowledged segments can be transmitted
in case of two connections. As a consequence, it is likely
that i) sending nodes are frequently stopped due to TCP
flow control regardless of network congestion, ii) congestion
control functionality of TCP is not fully exploited, iii) the
available transmission capacities are not fully used.

According to the above reasoning, we can state that TCP
over LoWPAN over IEEE 802.15.4 would not perform well
and that simpler and more lightweight transport protocols, such
as UDP, would be more suitable, given the limited memory
resources of IEEE 802.15.4 nodes. In addition, loss recovery
mechanisms could be provided by the application and the
IEEE 802.15.4 link layer and operate in conjunction with the
(unreliable) UDP transport.



D. Network and service discovery

According to the current IEEE 802.15.4 standard, the net-
work discovery process exploits the transmission of beacon
frames from coordinators, both in beacon-enabled mode and
in non beacon-enabled mode. The information that IEEE
802.15.4 nodes can deduce from the examination of the beacon
frames during the network discovery phase mainly relates to
i) the (64 bit) PAN identifier of the network, ii) the logical
channel occupied by the network, iii) the capability of the
network to accept joining requests. As a consequence, IEEE
802.15.4 nodes can choose a network on the basis of the
PAN identifier only and cannot automatically (e.g. with zero-
configuration) select a network based on the offered services.
Thus, IEEE 802.15.4 nodes can only exhaustively associate
with all the available networks, until services of interest are
discovered in one of these networks.

To allow self-configuring network discovery procedures in
IEEE 802.15.4 LR-WPANs, we propose the creation of a
“default discovery WPAN”, with which each new joining node
initially associates to find out information about the services
offered by available WPANs in the node service area. As
regards how the default discovery WPAN collects information
about the existing WPANs in the surrounding area and the
offered services and how a joining node take advantage of
the presence of the default discovery WPAN, we propose a
solution based on the interaction between 6LoWPAN/IPv6
gateways and the joining node. A 6LoWPAN/IPv6 gateway is
the interconnection node between IEEE 802.15.4 6LoWPAN
and IPv6 networks and its goal is to translate the packet format
in case of compression and to cope with possible fragmenta-
tion/reassembly operations acting in stateless and lightweight
manner since it has not to store any state information about
address translations and on going communications.

As depicted in figure 2, each 6LoWPAN/IPv6 gateway
announces its WPAN (PAN identifier, offered service, IPv6
address prefix of the network and other useful information to
the service discovery) by transmitting DNS-SD/mDNS [23]
messages to a multicast group which also the gateway of the
default discovery WPAN belongs to (on the backbone that
interconnect the WPAN gateways). When DNS-SD/mDNS
messages with the discovery information are received by
the gateway of the default discovery WPAN, a database of
available WPANs and their offered services is created. The
requirements for the creation of the database in the gateway
of the default WPAN is that both WPAN gateways and default
WPAN gateway are associated with the same multicast group
to send and receive DNS-SD/mDNS messages. A new joining
IEEE 802.15.4 6LoWPAN device i) uses the IEEE 802.15.4
facilities for channel scanning and finds out the WPANs
available in its neighbourhood, ii) joins the default discovery
WPAN and queries the 6LoWPAN/IPv6 gateway about the
discovered WPANs, iii) selects a suitable WPAN based on the
offered services.

From the IPv6 point of view, when a node joins the
default discovery WPAN, it can communicate with the default

DNS-SD/mDNS messages

WPAN A

WPAN B

DEFAULT WPAN

Association to the default WPAN

List of WPANs scanned

List of WPANs requested features

Association to the selected WPAN

Fig. 2. Interaction between 802.15.4 nodes and default discovery WPAN
gateway.

discovery WPAN gateway by using link local addressing. In
this way, if the default discovery WPAN gateway is assigned
the address FE80 :: 1 (or any other IPv6 anycast address),
not only new joining nodes know a priori the address of
the default discovery WPAN gateway, but also gateways of
different WPANs can have the same IPv6 address, since an
IPv6 local address is valid only in the subnetwork where it is
used.

The above solution calls for: i) a reserved PAN ID, in
such a way that each node is able to recognize the default
discovery WPAN, ii) a pre-existing network infrastructure that
is responsible of creating and maintaining the default discovery
WPAN. The last requirement is due to the fact that an ordinary
IEEE 802.15.4 node is not allowed to simultaneously join
different WPANs. Thus, if the first (ordinary) joining node
does not find any default discovery WPAN and creates such
PAN by using the reserved PAN ID, later on it would not be
able to join other WPANs of interest.

Besides the default discovery WPAN, we propose the in-
troduction of a default free WPAN, with which nodes may
associate with and where nodes announce their identity, if
they want to communicate with other nodes, even in absence
of pre-existing default discovery WPAN and other WPANs.
A similar WPAN would allow the automatic discovery and
communication among nodes and would be extremely useful
as a social networking facility. Like the default discovery
WPAN, the default free WPAN should be assigned a reserved
WPAN ID. However, differently from what happens for the
default discovery WPAN, each node is allowed to create and
maintain a default free WPAN.

VI. A POSSIBLE PROTOCOL ARCHITECTURE

A high level overview of a possible protocol architecture is
depicted in figure 3.

This architecture integrates the different solutions we dis-
cuss in the previous section. The standard IEEE 802.15.4
is used at MAC sublayer. The protocol stack in figure 3
includes also AODV for the routing algorithm, the automatic
address assignment module, the 6LoWPAN adaptation layer.
The availability of IPv6 at network layer allows to use UDP
as transport protocol. The stack offers standard socket APIs to



Fig. 3. High level overview of the proposed protocol architecture.

application developers. Thus, as regards the application layer,
applications may take advantage from socket APIs to interact
with the underlying transport protocol. Finally, the protocol
stack in figure 3 includes the module for network and service
discovery described in the previous section; this is depicted as
orthogonal with respect to the protocol stack, since it requires
support from all the protocol stack layers.

A. 6loWPAN/IPv6 gateway architecture

Figure 4 depicts a high level overview of the architecture
of a 6LoWPAN/IPv6 gateway. As it can be seen, a 6loW-
PAN/IPv6 gateway may be regarded as the union of two
separate components: the IEEE 802.15.4 node and the IPv6
node. The architecture of the IEEE 802.15.4 node is almost
identical to the one presented in figure 3, with the only excep-
tion of two specific modules for decompression/compression
of packet format and the transmission/reception of packets
to/from the serial line. The IPv6 node plays instead the twofold
role of i) forwarding the packets received through the serial
line toward the public Internet and viceversa and ii) providing
the network and service discovery functionalities described in
the previous section.

Fig. 4. High level overview of a 6LoWPAN/IPv6 gateway protocol archi-
tecture.

VII. DESCRIPTION OF THE IMPLEMENTED TEST-BED

The protocol architecture presented in section VI has been
implemented in a real test-bed in two different phases.

During the first one, described in subsection VII-A, we
tested the basic functionalities of the proposed protocol ar-
chitecture (transmission/reception of IPv6 datagrams using
LoWPAN adaptation layer, automatic address assignment,
interconnection with the public Internet, simple service discov-
ery). For this purpose, we used a development kit composed
of very simple nodes equipped at most with a simple display.

In the second phase of the implementation, described in sub-
section VII-B, we developed a more realistic application sce-
nario, where PDAs equipped with Secure Digital Input/Output
(SDIO) cards are able to run the firmware implementing the
proposed protocol stack.

A. Implementation of the basic functionalities of the proposed
solution

The general reference scenario of the basic test-bed is
depicted in figure 5. Each node in the IEEE 802.15.4 LR-
WPAN implements the LoWPAN adaptation layer and, thanks
to this, it is able to transmit/receive IPv6 packets to/from
the Public Internet. Figure 5 shows also that such kind of
interaction between IEEE 802.15.4 6LoWPAN networks and
the Public Internet calls for a gateway, which is composed by
an IEEE 802.15.4 6LoWPAN device connected to a common
Linux box through a serial line. In such a way, the gateway
is able to communicate with both IEEE 802.15.4 6LoWPAN
devices and hosts in the Public Internet.

Fig. 5. Reference scenario for the implemented basic test-bed.

As regards the test-bed hardware, we used the Texas In-
struments’ CC2430ZDK [18] development kit. This is based
on the CC2430 System-on-Chip, which basically includes the
2.4 GHz IEEE 802.15.4 transceiver, an 8051 microcontroller
and the flash memory. The kit includes three simple minimal
boards (CC2430DB) and two evaluation boards (CC2430EB)
equipped with joystick, several buttons, USB port, RS-232
port and LCD display. The RS-232 port has been used to
connect an evaluation board to the Linux box and to implement
the 6LoWPAN/IPv6 gateway. We used, instead, common off-
the-shelf hardware for the Linux box. The test-bed hardware
components are shown in figure 6.

As nodes in the IEEE 802.15.4 6LoWPAN LR-WPAN and
gateway play different roles in the test-bed, in what follows
we provide separate descriptions for these components.



Fig. 6. Test-bed hardware components.

1) IEEE 802.15.4 6LoWPAN nodes: All IEEE 802.15.4
nodes implements the proposed protocol stack. This holds for
both the PAN coordinator or end device.

In more detail, we used the so called TIMAC, that is
Texas Instruments’ implementation of the IEEE 802.15.4
MAC protocol, as lowest layer and starting point of the
proposed protocol stack. The upper layers have been instead
implemented from scratch.

Whereas the interaction between the implemented stack
and the TIMAC is based on the APIs provided by Texas
Instruments, the interaction between the implemented stack
and the application layer are based on Socket compliant APIs,
whose prototypes are almost equal to the standard IPv6 socket
functions used by the most used operating systems, in order
to simplify the learning process for application developers.

As regards the packet creation/processing during the trans-
mission and reception operation, each packet is dealt as a
sequence of bytes. In this process, the socket buf data structure
plays a fundamental role. In the reception phase, the socket buf
data structure allows to parse the received packet by storing
the values of the packet fields. In the transmission phase, the
socket buf data structure allows to derive the packet to be
transmitted by storing the values that have to be included
in the packet fields. In doing this, we took free inspiration
from the homonym socket buf kernel Linux implementation
and we adapted it to the context of low-energy and low-power
devices. Thus, the implemented socket buf data structure is
much simpler and lighter, and it is about 100 bytes sized.
We also used the socket buf data structure to store some
state information that must be shared among different stack
layers (for instance, information on eventual UDP header
compression has been included in the 6LoWPAN header).

2) 6LoWPAN/IPv6 gateway: The 6LoWPAN/IPv6 gateway
enables the transmission of 6LoWPAN packets towards the
Public Internet and vice versa.

The IEEE 802.15.4 device connected to the Linux box
through the serial line is responsible for the interaction be-
tween the gateway and the IEEE 802.15.4 LR-WPAN. With

respect to the other IEEE 802.15.4 devices in the LR-WPAN,
the IEEE 802.15.4 device in the gateway implements a module
for the translation of the 6LoWPAN headers and possible UDP
compressed headers into standard IPv6 and UDP headers and
vice versa. Such translation does not regard the destination
addresses. This means that the 6LoWPAN/IPv6 gateway does
not perform NAT-typical operations and can operate in state-
less manner. So, unlike the solutions presented in section II,
where a stateful gateway is used to permit the interconnection
between IEEE 802.15.4 LR-WPANs and the whole IPv6 public
Internet, the gateway in the proposed solution acts as a simple
layer-3 router and does not execute any protocol translation
operation. The only operation performed by the gateway is
the compression/decompression of IPv6 and UDP headers for
packets directed to/from the 6LoWPAN network, which means
simply adding/striping the 6LoWPAN adaptation header.

The Linux box is instead responsible for the interaction
between the gateway and the Public Internet. More precisely,
the Linux box may be regarded as endpoint of an IPv6-in-IPv4
tunnel to the SixXS tunnel broker [24]. With regard to the
tunnelling protocol, we chose a non-standard solution based
on AYIYA [25] in place of the standard proto-41-like solutions
[26], in order to allow the gateway to be placed behind NATs.
In such a way, under the assumption that AYIYA data are
conveyed by UDP, the resulting tunnel is IPv6-over-AYIYA-
over-UDP-over-IPv4. We also used the Unix implementation
of AICCU (Automatic IPv6 Connectivity Client Utility) [27]
for the tunnel configuration. More precisely, AICCU sets up
a virtual network interface, which is assigned with a global
IPv6 unicast address and uses the other endpoint of the AYIYA
tunnel, i.e. the tunnel broker endpoint, as default gateway.

As regards the interaction between the IEEE 802.15.4 device
and the Linux box, we chose the SLIP (Serial in LIne Protocol)
[28] protocol to carry data over the serial line. Even if SLIP
supports the only transmission of IPv4 datagrams and as such
it calls for encapsulating data into IPv4 packets, we preferred
SLIP to other standard and custom protocols to transmit IP
packets over a serial line, because the very limited size of the
flash memory in CC2430 devices (128 KB) calls for a simple
protocol that can be implemented with small code size and
this is just the case of SLIP. SLIP limits indeed itself to define
two special characters, END (0xC0) and ESC (0xDB), in such
a way that i) each IPv4 packet is terminated with an END
character, ii) if the IPv4 packet contains an END character,
this is replaced by the two byte sequence of ESC and octal
334, iii) if the IPv4 packet contains an ESC character, this
is replaced by a two byte sequence of ESC and octal 335.
In more detail, we used the Unix utility slattach in order to
create a point-to-point network interface able to transmit IPv4
packets over SLIP through the serial line. Then a point-to-point
tunnel was created to connect the network interface created by
means of slattach and a new virtual interface assigned with an
IPv6 address in the same IPv6 subnet as the IEEE 802.15.4
6LoWPAN LR-WPAN. In such a way, this interface is able
both to capture and intercept all the traffic from the Public
Internet towards the LR-WPAN and simultaneously to use the



serial line and SLIP to transmit that traffic towards the IEEE
802.15.4 part of the gateway.

B. Deploying the proposed solution in a real scenario

We conceived an application scenario where in a shopping
center are deployed two different IEEE 802.15.4 LR-WPANs
and a default discovery WPAN. With respect to the basic im-
plementation described in subsection VII-A, where TI’s min-
imal board (CC2430DB) and evaluation boards (CC2430EB)
play the role of simple IEEE 802.15.4 devices, we used PDAs
equipped with Secure Digital Input/Output (SDIO) cards,
where the TIMAC and the implemented protocol stack run in
form of firmware. In such a way, we were able to fully exploit
the PDAs equipment (display, keypad, etc.) and to develop
applications based on the IPv6/6LoWPAN capabilities of the
proposed protocol stack.

As depicted in figure 7, in order to enable the interaction
between the SDIO and the applications on the PDA, we
developed an API inspired by the Berkeley socket interface:
using this API the application developer can simply re-
use/adapt existing applications or develop from scratch IP-
enabled applications with minor effort.

Control API
berkley-socket 
like

6loWPAN Network

IP-compliant
applications

Fig. 7. Interaction between the mobile node and the 6loWPAN-enabled
SDIO.

More precisely, we implemented an application that inter-
acts with the firmware loaded on the SDIO cards and allows
users i) to visualize on the PDA display the available WPANs
and information about the offered services, exploiting the
capability of the network and service discovery framework, ii)
to chat with other users, even if connected to different WPANs,
iii) receive advertisement messages.

The reference scenario for the application is depicted in
figure 8. WPAN1 and WPAN2 denote the two WPANs in
the shopping centres, and G1 and G2 denote the correspond-
ing IPv6/6LoWPAN gateways. The default discovery WPAN
makes possible the network and service discovery, when a
PDA wants to join a WPAN, and operates as described in sub-
section V-D. As regards the chat function, we developed a sin-
gle room client-server chat as a simple proof-of-concept of the
protocol stack functionalities. The remote chat server depicted
in figure 8 manages user connections and disconnections,
buddy lists, and it allows buddy users to discover each other. In

addition, in case of users connected to different WPANs, the
chat server makes possible the communication by receiving
messages from the IPv6/6LoWPAN gateway of the source
WPAN and forwarding messages to the IPv6/6LoWPAN gate-
way of the destination WPAN. As regards the advertisement
server, it interacts with the IPv6/6LoWPAN gateways to send
advertisements and promotional messages, that PDAs receive
in form of pop-up messages. These messages can also contain
URLs that users can access through the default web browser
by using the GSM/UMTS and/or Wi-Fi connectivity.

Fig. 8. Reference application scenario.

The above application was developed for Windows Mobile
5.0 and PocketPc 2003, and it is based on Microsoft Founda-
tion Classes (MFCs).

Figure 9 shows three screenshots of the test-bed applica-
tions.

Fig. 9. Screenshots of the GUI of the developed application.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we presented a protocol stack for fully IP-
enabled and self-configuring IEEE 802.15.4 LR-WPANs. On
the one hand, the stack includes the LoWPAN adaptation layer
to support the transmission/reception of IPv6 packets. On the
other hand, the stack includes also AODV as routing protocol,
UDP as transport protocol, a protocol for 16-bit short address
auto-configuration and assignment, a mechanism for network



and service discovery. We also presented a test-bed, which
implements the proposed protocol stack on a SDIO firmware
and describes a use case where mobile nodes communicates
in a simple application scenario.

While in this work we took into account only the 6loWPAN
specifications, there are many other recently proposed IETF
internet draft: future work will integrate in the stack the new
compression format for IPv6 datagram [29] and the RPL
routing protocol [30] designed by the ROLL working group
especially for Low power and Lossy Networks (LLNs).

This work was inspired from the general goal of “CON-
VERGENCE” project [2]: to enable a novel content-centric,
data-oriented architecture based on a publish-subscribe model
in order to handle new needs associated with the emergence
of an “Internet of Things”, an “Internet of Services” and
an “Internet of People”. The future work will be inspired
by the “CONVERGENCE” ideas as well. In fact, we will
assume the availability of a publish/subscribe infrastructure
for data exchanges. A publish/subscribe service model allows
introducing i) new functionality, ii) support for new models
of use and new business models, difficult or impossible to
implement on the current Internet architecture; iii) support for
discontinuous modes of operation, including sleeping periods
caused by the energy saving features of the IEEE 802.15.4
standard. During sleeping periods, nodes go temporarily down
and are not reachable, which can lead to temporary network
splits. This issue will be taken in account in future works not
only by exploiting the publish/subscribe paradigm but also
by integrating MANET and DTN (Delay Tolerant Network)
routing functionalities, to cope with network partitioning.

REFERENCES

[1] IEEE Standard 802.15.4-2003, Part 15.4: Wireless Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs), 2003.

[2] www.ict-convergence.eu.
[3] IEEE Standard 802.15.4-2006, Part 15.4: Wireless Medium Access Con-

trol (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-WPANs), 2006.

[4] ZigBee Alliance, ZigBee Specification, October 2007.
[5] M. Turolla, E. Alessio, ZSIM enabling innovative services to improve

quality of life, white paper on line available at www.zigbee.org/imwp/
download.asp?ContentID=10403

[6] N. Gershenfeld, R. Krikorian, D. Cohen, The Internet of Things, Scientific
American, October 2004.

[7] RFC 4944, Transmission of IPv6 Packets over IEEE 802.15.4 Networks.
[8] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulo, K. Kim,

TinyREST: A Protocol for Integrating Sens Networks into the Internet,
in Proceedings of REALWSN, 2005.

[9] S. Krishnamurthy, TinySIP: Providing Seamless Access to Sensor-based
Services, in Proceedings of Third Annual International Conference on
Mobile and Ubiquitous Systems: Networking & Services, 2006.

[10] S. Sakane, Y. Ishii, K. Toba, K. Kamada, N. Okabe, A translation method
between 802.15.4 nodes and IPv6 nodes, in Proceedings of International
Symposium on Applications and the Internet (SAINT), 2006.

[11] R. Wang, R. Chang, H.Chao, Internetworking Between ZigBee/802.15.4
and IPv6/802.3 Network, in Proceedings of SIGCOMM 2007 Workshop
”IPv6 and the Future of the Internet”, 2007.

[12] blip project web site, http://smote.cs.berkeley.edu:8000/tracenv/wiki/blip
[13] M. Durvy, J. Abeill, P. Wetterwald, C. OFlynn, B. Leverett, E. Gnoske,

M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, A. Dunkels, Making sensor
networks IPv6 ready, in Proceedings of the 6th ACM conference on
Embedded network sensor systems, 2008.

[14] M. Dohler et al., Routing Requirements for Urban Low-Power and Lossy
Networks, RFC 5548, May 2009.

[15] C. Bormann, D. Sturek, Z. Shelby, 6LowApp: Problem Statement for
6LoWPAN and LLN Application Protocols, Internet Draft.

[16] RFC 4862, IPv6 Stateless Address Autoconfiguration.
[17] RFC 2460, Internet Protocol Version 6 (IPv6) Specification
[18] CC2430 web site, http://focus.ti.com/docs/prod/folders/print/cc2430.

html
[19] Internet Draft, Problem Statement and Requirements for 6LoWPAN

Routing
[20] N. Vaidya, Weak Duplicate Address Detection in Mobile Ad Hoc

Networks, in Proceedings of ACM MobiHoc, 2002.
[21] C. Perkins, J. Malinen, R. Wakikawa, E. Belding-Royer, Y. Sun, IP

address autoconfiguration for ad hoc networks, expired Internet Draft,
2001.

[22] µC/TCP-IP reference web site, http://www.micrium.com/products/
tcp-ip/tcp-ip.htm

[23] Multicast DNS (mDNS) reference web site, http://www.multicastdns.
org/

[24] SixXS web site, http://www.sixxs.net/
[25] J. Massar, AYIYA: Anything In Anything , expired Internet

Draft, on line available at http://unfix.org/∼jeroen/archive/drafts/
draft-massar-v6ops-ayiya-02.txt

[26] RFC 1933, Transition Mechanisms for IPv6 Hosts and Routers, 1996.
[27] AICCU reference site, http://www.sixxs.net/tools/aiccu/
[28] RFC 1055, A Nonstandard for transmission of IP datagrams over serial

lines: SLIP, 1988.
[29] draft-ietf-6lowpan-hc-07, Compression Format for IPv6 Datagrams in

6LoWPAN Networks, April 8, 2010
[30] draft-ietf-roll-rpl-07, RPL: IPv6 Routing Protocol for Low power and

Lossy Networks, March 8, 2010


